Rare kaon measurements with NA62/NA48 minimum bias data

Sergey Podolsky

Centre for Cosmology, Particle Physics and Phenomenology () Université catholique de Louvain, Belguim

NA62 experiment

History milestones

- NA48
 - 1990 (proposal) 2007 (most recent paper)
 - Main goal: $\operatorname{Re}\left(\frac{\epsilon'}{\epsilon}\right) \sim \frac{1}{6} \left\{ 1 \frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} / \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^+ \pi^-)} \right\}$
- NA48/1
 - 1999 (proposal) 2010 (most recent paper)
 - Goals: BR($K_s \to \pi^0 e^+ e^-$), Ξ^0 decays
- NA48/2
 - 2000 (proposal) ... (several analysis are on going)
 - Goals:
 - search for direct CP violation in $K^{\pm} \to \pi^{\pm}\pi^{\pm}\pi^{\mp}$, $K^{\pm} \to \pi^{0}\pi^{0}\pi^{\pm}$ decays
 - precise study of $K^{\pm} \to \pi^{\pm} \pi^{\mp} l^{\pm} \nu(\tilde{\nu})$ (Ke4) decays
 - measurements of rare and radiative decays $K^\pm \to \pi^\pm \pi^0 \gamma$, $K^\pm \to \pi^\pm \gamma \gamma$, $K^\pm \to e^\pm \nu \gamma$
 - precise determination of $K^{\pm} \to \pi^0 l^{\pm} \nu$ (KI3) form factors
- NA48/3 NA62
 - 2005 (proposal) ...
 - · Goals:
 - observation of 80 events of the process $K^+ \to \pi^+ \nu \bar{\nu}$
 - testing lepton universality with Ke2/Kmu2 decays
 -

NA62/NA48 experiment

NA48/2 setup

NA62/NA48 experiment

Beam time

2003/04 - K[±] high intensity runs

2007/08 - $K_{e2}^{\pm}/K_{\mu 2}^{\pm}$ runs

2007-2012 - R&D

2012 - Integration of the available sub-detectors

~2014 - Physics runs after the end of LHC long shutdown

Motivation

Rate and spectrum $(z=(m_{yy}/m_K)^2)$ depend on single unknown parameter ĉ

O(p⁴) Loop diagrams (Ecker, Pich, de Rafael, NPB303 (1988) 665))

O(p⁶) Unitarity corrections (D'Ambrosio, Portoles, PLB386(1996)403))

Distributions of z related to different ĉ values

BR($K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$) vs ĉ

Detection principle

 π^{\pm} track position, direction $\Rightarrow Z_{\text{vertex}}$

Background sources

Decay mode	Potentiality of misidentification			
$K^{\pm} \rightarrow \Pi^{\pm}\Pi^{0}$	Mass misreconstruction			
K±→π±π ⁰ π ⁰				
K±→π±π ⁰ γ (IB)	Losing additional γ('s) in veto			
K^{\pm} → $\pi^{\pm}\pi^{0}$ γ (DE)	(incl. LKr)			
K±→π±π ⁰ γ (INT)				

contribution significantly depends on concrete kinematics and BR of channel

Experimental status

```
1997 - BNL E787, first observation 
Br(K<sup>±</sup> → π<sup>±</sup>γγ, 100 MeV/c < p_{\pi^+}^{cM}< 180 MeV/c)= (6.0±1.5<sub>stat</sub> ±0.7<sub>sys</sub>)x10<sup>-7</sup> 
Candidates: 31, background: (5.1±3.3) 
Fit results: \hat{c}= 1.6±0.6; BR = (1.10±0.32)×10<sup>-6</sup> 
[P. Kitching et al. Observation of the decay K<sup>±</sup> → π<sup>±</sup>γγ. Phys. Rev. Lett., 79:4079, 1997.]
```

2005 - Search for the decay K+ → π+γγ in the π+ momentum region P > 213MeV/c
Br(K[±] → π[±]γγ, P>213 MeV/c) < 8.3 x 10⁻⁹ (under the assumption of chiral perturbation theory including next-to-leading order "unitarity" corrections)
Candidates: 0

[Phys. Lett. B 623, 192 (2005), arXiv:hep-ex/0505069, BNL-73917-2005-JA]

Statistics

- Minimum bias trigger samples, ~52h of data taking in 2004
- Downscaled (control) triggers, 120d of data taking in 2007
- Different acceptances, different beam momentum
- Separate analysis
- Combine results

Results. Signal plots

K±→π±γγ candidates:	147	
K^{\pm} → π^{\pm} π^{0} (γ) contribution:	11.0 ± 0.8	
$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ contribution:	5.9 ± 0.7	
K [±] →π [±] γγ signal:	130 ± 12	

K±→π±γγ candidates:	175		
K^{\pm} → π^{\pm} π^{0} (γ) contribution:	11.1 ± 1.8		
K [±] →π [±] π ⁰ π ⁰ contribution:	1.3 ± 0.3		
K [±] →π [±] γγ signal:	163 ± 13		

Results. ChPT fits

Combined Results

	NA48/2 (2004)	NA62 (2007)	Combined
ĉ, O(p6)	$1.67\pm0.39_{stat}\pm0.09_{syst}$	$2.21\pm0.31_{stat}\pm0.08_{syst}$	$2.00\pm0.24_{stat}\pm0.09_{syst}$
	= 1.67 ± 0.40	= 2.21 ± 0.32	= 2.00 ± 0.26
ĉ, O(p4)	$1.36\pm0.33_{stat}\pm0.07_{syst}$	1.71±0.29 _{stat} ±0.06 _{syst}	1.56±0.22 _{stat} ±0.07 _{syst}
	= 1.36 ± 0.34	= 1.71 ± 0.30	= 1.56 ± 0.23

ChPT O(p6) combined BR fit (full kinematic region): BR(K±→π±γγ) = (1.01 ± 0.06)×10⁻⁶

Future

- Beam
 - Special data collection is foreseen. Target is to collect at least one order more K⁺→π⁺γγ decays than has been ever achieved

Summary on the $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ process

- Sample of K⁺→π⁺γγ events recorded with a minimum bias trigger has been analyzed
- A set of 130±12 (for NA48/2) and 163±13 (for NA62) signal events of K[±]→π[±]γγ decay was reconstructed (preliminary)
- The new value of model dependent ChPT O(p6) combined BR fit:

BR(
$$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$$
) = (1.01 ± 0.06)×10⁻⁶ was achieved

 Improvement of precision of the K+→π+γγ process could be achieved in the next few years

The K⁺→e⁺vγ process

Motivation

 SD (Structure Dependent term) of the decay matrix element is sensitive to observables of the K⁺→e⁺vγ process and gives dominant contribution to the decay rate

- Set of predictions for form-factors are given (ChPT O(4), ChPT O(6), LFQM)
- Differential decay rate in term of vector and axial form factors V (x) and A(x):

$$\frac{d^2\Gamma(K^+ \to e^+ \nu \gamma, SD^+)}{dxdy} = \frac{G_F^2 |V_{us}|^2 M_K^5 \alpha}{64 \pi^2} (V(x) + A(x))^2 (1 - x)(x + y - 1)^2$$
$$x = \frac{2E_\gamma^{cm}}{M_K}, y = \frac{2E_e^{cm}}{M_K}$$

From PDG(2012): BR = $(9.4 \pm 0.4) \times 10^{-6}$ [KLOE, EPJ C64 (2009) 627, 1484 ± 63 events, $10 < E_{\gamma}^* < 250$ MeV, $p_e^* > 200$ MeV/c]

CHUAN-HUNG CHEN, CHAO-QIANG GENG, AND CHONG-CHUNG LIH, PHYSICAL REVIEW D 77, 014004 (2008)

SD⁺ is the main contribution x > 0.2 to reduce the IB background y > 0.95 dictated by the main background coming from Ke3

The K⁺→e⁺vγ process

Preliminary results

- ~10000 events was selected, K⁻ samples will be included into analysis
- normalization was performed with K⁺→π⁰e⁺ν decay mode
- acceptance ~7%, background 5%
- systematic uncertainties dominated by background subtraction

aim is to achieve 10 time more statistics than predecessor (KLOE)

Conclusion

Analysis is going on, in short term new results for the $K^+ \rightarrow e^+ v \gamma$ and $K^\pm \rightarrow \pi^\pm \gamma \gamma$ processes are expected

The collaboration is preparing the new setup and measurement of the $K^+ \rightarrow \pi^+ \gamma \gamma$ process could be possible in the next few years

Backup slides

Data samples

Downscaling factors of the control triggers in 2007							
Trigger	P1	P2,3	P4	P5,6			
K _{e2} main: Q ₁ *E _{LKR} (*1TRK)*L3_autopass/D	50	50	50	50			
$K_{\mu 2}$ main: $Q_1(*1TRK)/D$	50	50	150	150			
Q_1/D	1	5000	5000	600			
Q_1*E_{LKR}	225*)	_	-	100			
NHOD	25*)	50	50	150			
Overall downscaling	11.399	17.539	22.782	22.979			
K decay flux ×10 ⁹ (-18m <z<80m)< td=""><td>2.28</td><td>6.25</td><td>4.51</td><td>10.14</td></z<80m)<>	2.28	6.25	4.51	10.14			

Normalization

Mass resolution: $\sigma_{2\pi} = 3.3 \text{ MeV/c}^2$. The signal region (480; 510) MeV/c² corresponds to ~4.5 σ .

 $K_{2\pi\gamma}$ (IB) process fully included in MC simulation.

 $K_{2\pi}$ candidates: 44.327M

 $K_{\mu 3}$ background: 50.4K (0.11%)

Acceptance: 16.85% K decay flux: 1.287×109

The expected number of reconstructed signal events in bin:

$$\lambda_j^{\text{signal}}(\hat{c}) = (\Phi_K/(\hbar/\tau_K)) \sum_i \mathcal{J}_i A_{ij}$$
,
 $\mathcal{J}_i = \int \int d\Gamma(\hat{c},z) dy dz$ over the i-th bin.

The resulting $\lambda_j^{\text{signal}}(\hat{c})$ are then re-binned to standard $\Delta z = 0.02$ bins.

Maximize the log-likelihood: $\ln \mathcal{L} = \sum_{\substack{\text{bins} \\ \text{l}}} (k_j \ln \lambda_j - \lambda_j - \ln(k_j!))$

 $\lambda_j(\hat{c}) = \lambda_j^{\text{signal}}(\hat{c}) + \lambda^{\text{bkg}}$: expected number of events in bin j;

k_j: observed number of events in bin j.

Run over a MC sample with a uniform phase space distribution. For a set of \hat{c} values, apply the weights $w(z_{true},y_{true})=d\Gamma/(dzdy)$ to the events.

For each \hat{c} , the expected reconstructed z spectrum is extracted from the histograms above, scaled by $\mathcal{J}_{PS}\Phi_K$ / (\hbar/τ_K) / N_{gen} , where $\mathcal{J}_{PS} = \int \int dy dz = 0.147429$ is the phase space integral. Log-likelihood is then maximized as in the previous method.

