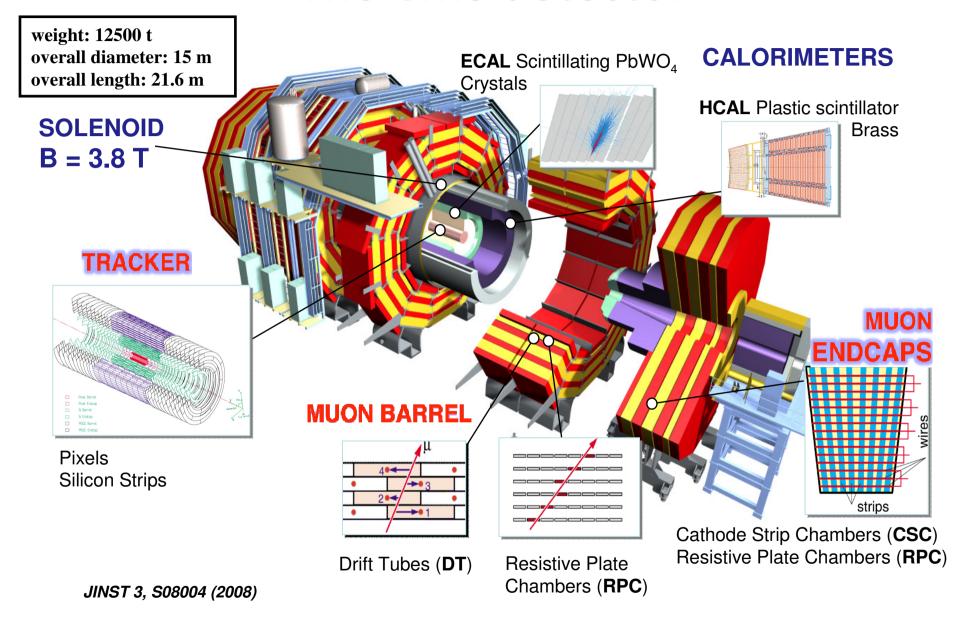


Studies of *beauty* and *charm* quark production and decays with the CMS experiment

Luca Perrozzi (CERN)

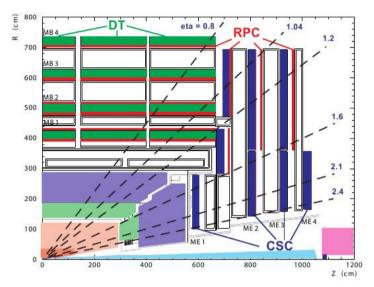
On behalf of the CMS collaboration

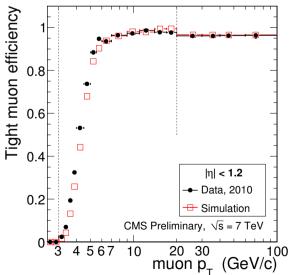
BEACH 2012, Wichita, July 23rd-28th


Introduction

- Measurements of heavy-flavor production provide a testing ground for QCD calculations in a new energy regime
 - NLO contributions dominate at LHC, large uncertainties remain due to factorization and renormalization scales
- b-flavor identification is crucial in many new physics studies: SM backgrounds must be understood
- Measurements of B-hadrons properties provide important tests of the SM: any deviation would be indirect indication of New Physics

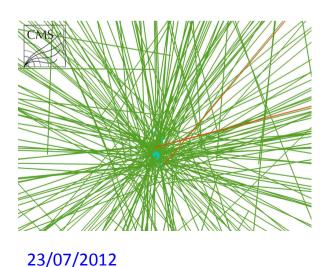
Outline

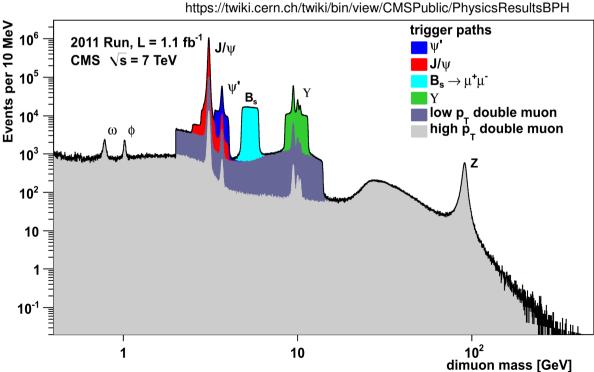

- CMS detector and performance
- B-hadrons
 - Observation of a new Ξ_b baryon
 - Observation of B⁺_c decays to J/ ψ π and J/ ψ 3π
 - Measurement of the $\Lambda_b \rightarrow J/\psi \Lambda$ differential cross section
- Inclusive b measurements
 - $-bb \rightarrow \mu\mu$ cross section
- Rare decays
 - Search for the decay $D^0 \rightarrow \mu^+ \mu^-$
- CMS topics covered by other speakers
 - Quarkonium production in pp and PbPb
 - Search for the decay $B_{(s)}^0 \rightarrow \mu^+ \mu^-$
 - Higgs searches


The CMS detector

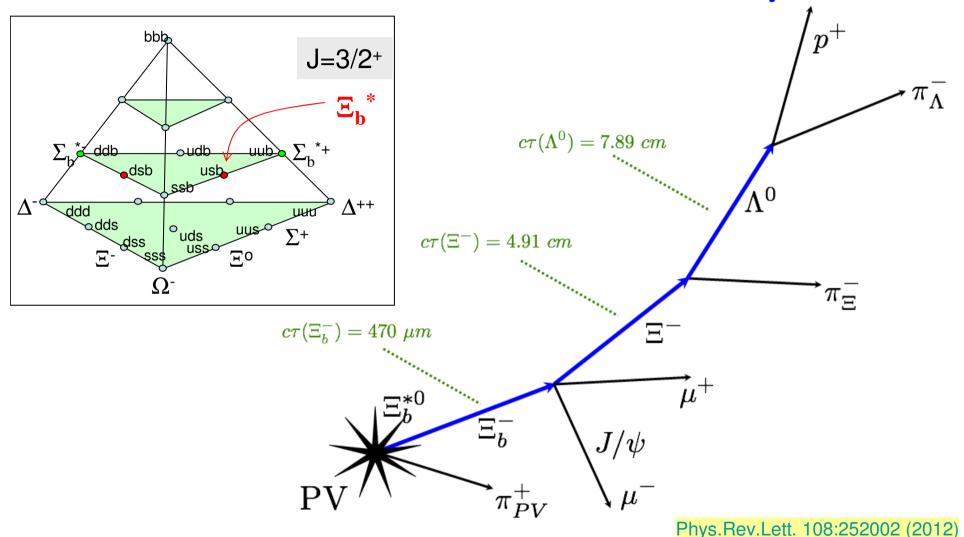
Tracking and muon reconstruction

- Tracks: Excellent p_T resolution ≈ 1%
- Tracking efficiency > 99% for central muons
- Excellent vertex reconstruction and impact parameter resolution (≈ 15 µm)
- Muon candidates: Match between muon segments and a silicon track
- Large pseudorapidity coverage: $|\eta| < 2.4$
- Muon efficiencies evaluated with
 - 1. MC methods
 - 2. Data-driven methods: Tag & Probe

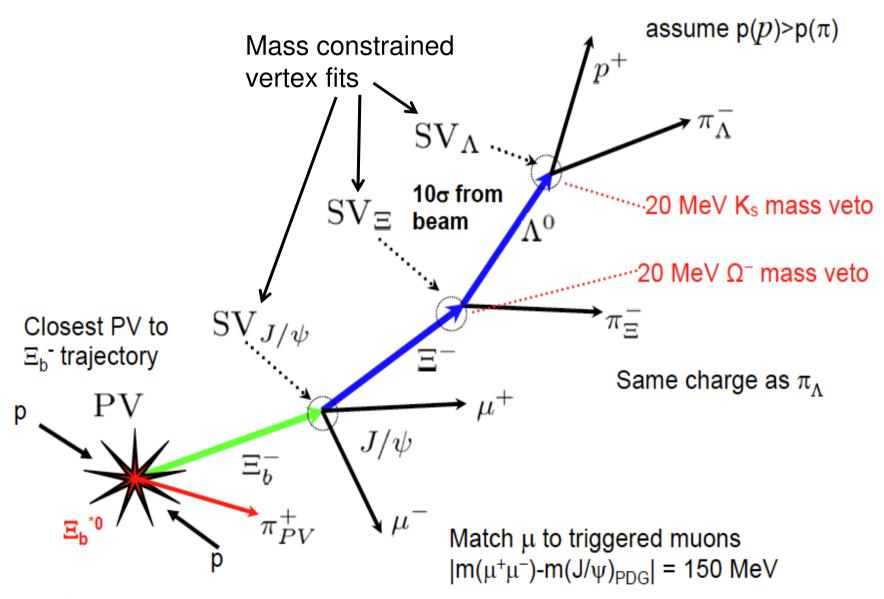




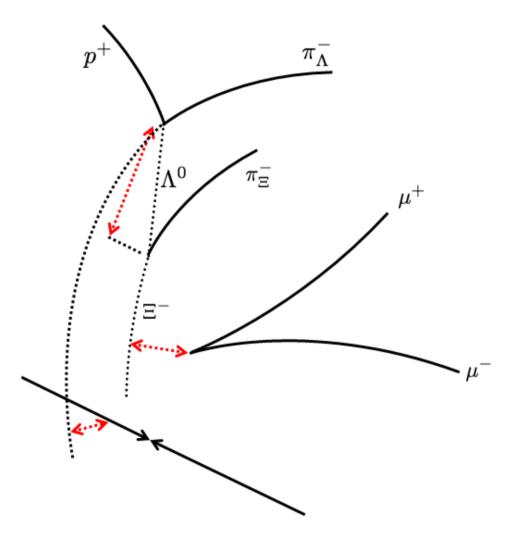
CMS-PAS-MUO-10-002


B-Physics Triggers

- Rates of a few Hertz (total CMS rate ~300Hz)
 - Mostly muon triggers
 - Requirements tightened following the increase in instantaneous luminosity
- Trigger selections based on:
 - p_T and $|\eta|$ of (di)muons
 - dimuon invariant mass
 - secondary vertex probability
 - impact parameters
 - flight length
 - pointing angle

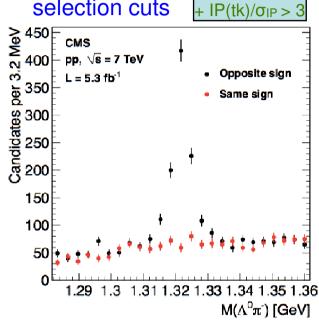

Observation of the Ξ_b^* baryon

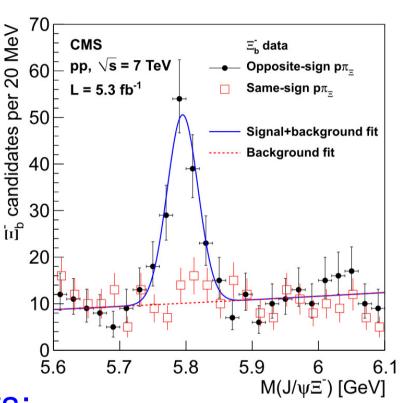
 Ξ_b^* decay chain contains 3 displaced secondary vertices:


$$\Xi_b^- \to J/\Psi(\mu^-\mu^+)\Xi^-(\Lambda\pi^-)$$
 with $\Lambda \to p\pi^-$

Ξ_b^* reconstruction

Ξ_b^- selection


- Algorithm to optimize the selection.
- 30 discriminating variables:
 - transverse momentum of μ^{\pm} , p, π_{Λ} , π_{Ξ} , Ξ, J/ ψ , Ξ_b
 - pseudo-rapidity of J/ψ
 - mass before fit of Λ, Ξ, J/ψ
 - I.P. significance w.r.t. the beam line for p, π_{Λ} , $\pi_{=}$, Λ , Ξ
 - Vtx. Probability, ct and Lxy significance of Λ , Ξ , Ξ _b
 - 3D distance significance for (J/ψ vtx. Ξ traj.) & (PV Ξ _b traj.)


Iterative procedure maximizes the $\Xi_{\rm b}^-$ yield (S) and $S/\sqrt{S+B}$

Ξ_{b}^{-} selection (cont'd)

Ξ^- candidate mass distributions after selection cuts $\frac{1}{|+|P(tk)/\sigma_{IP}|} > 3$

 Ξ_b candidates

Ξ_b fit results:

$$\mu = 5795.0 \pm 3.1 \text{ MeV}$$

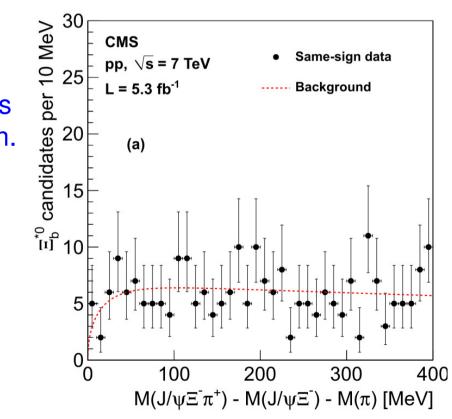
$$\sigma = 23.7 \pm 3.2 \; \mathrm{MeV}$$

PDG mass: 5790.5 ± 2.7 MeV

$$S = 108 \pm 14$$

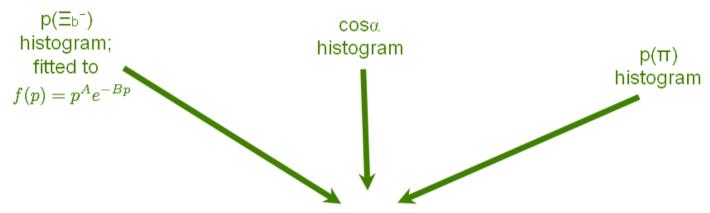
$$B = 38 \pm 7$$

$$S/\sqrt{S+B} = 8.9$$


$$\sqrt{2ln(\frac{L_{s+b}}{L_b})} = 11.4$$

23/07/2012

Ξ_b*0 reconstruction


- Combine Ξ_{b^-} candidates (within 2.5 σ of the mass peak) with tracks.
- Track requirements include:
 - Opposite sign w.r.t. Ξ_{b}^{-} . Same sign used to model the background.
 - p_T > 0.25 GeV

- Q = M(Ξ_b^{*0}) M(Ξ_b^{-}) M(π^+) removes uncertainties from Ξ_b^{-} mass resolution.
- No peak seen in Same sign $\Xi_b^-\pi$ as expected

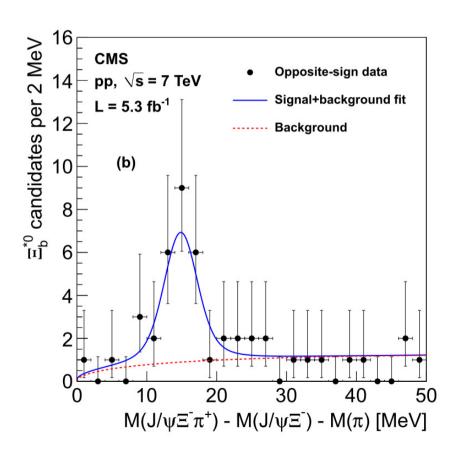
The background model

Background expected to be combinatorial. From the same sign sample:

Generate 100M sets of 3 values and use:

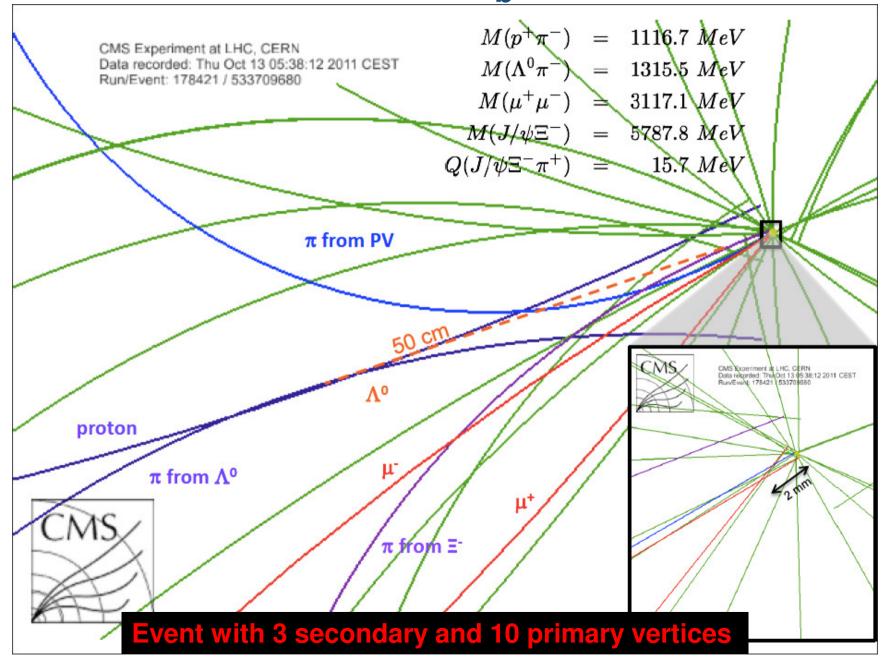
$$Q=\sqrt{M(\Xi_b^-)^2+M(\pi)^2+2E(\Xi_b^-)E(\pi)-2p(\Xi_b^-)p(\pi)\cos\alpha}-M(\Xi_b^-)-M(\pi)$$
 Get high statistics Q histogram. Then fit it to:

$$f_{bkg}(Q) = Q^A(e^{-BQ} + e^{-CQ} + e^{-DQ})$$

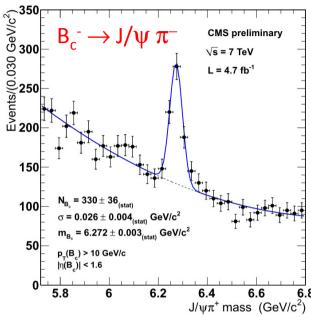

- To take systematic uncertainties into account:
- Use different functions for f(p)

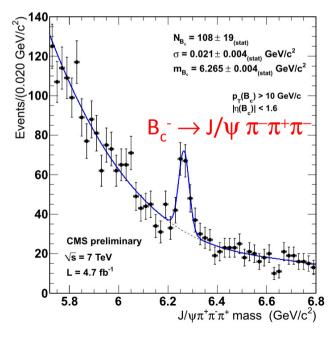
Results

• Constrain Q peak resolution to value from signal MC generated with $\Gamma(\Xi_b^{*0}) = 0$.


$$\sigma_{MC} = 1.91 \pm 0.11 \text{ MeV}$$

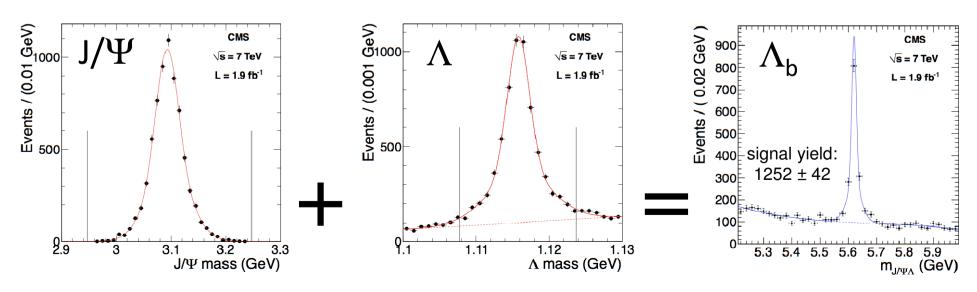
Use un-binned likelihood fit


- Significance:
- From the fit (likelihood ratio): 6.9σ
- From pseudo-experiments: 5.7σ
- $\Gamma (\Xi_b^{*0}) = 2.1 \pm 1.7 \text{(stat.) MeV}$
- $Q(\Xi_b^{*0}) = 14.84 \pm 0.74(stat.) \pm 0.28(syst.)$ MeV (Γ and Q compatible with expectations)
- $m(\Xi_b^{*0}) = 5945.0 \pm 0.7 \pm 0.3 \pm 2.7 \text{ (PDG) MeV}$
- Systematic uncertainties from:
 - Difference between measurement in the signal MC and the input to the generator.
 - Assuming a flat background Q distribution.

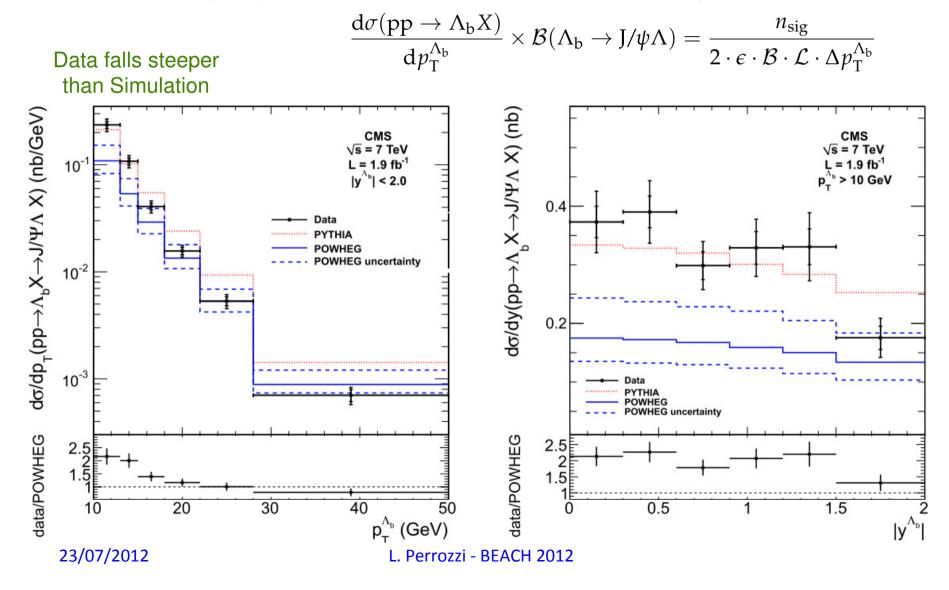

Candidate Ξ_b^{*0} event

B⁺_c meson studies

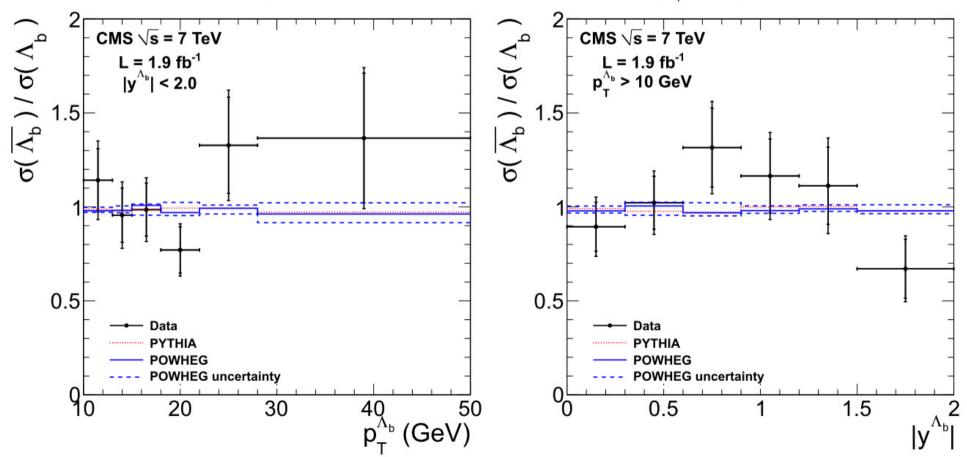
- B_c^+ is ground state of bound $\overline{b}c$ system
- Offers access to two different heavy quarks
 - Production requires $b\overline{b}$ and $c\overline{c}$ to be created
 - Branching ratio measurements help understand interplay between b and c decays
 - Lifetime measurement also tests decay model
- Large LHC dataset allows for 100's of reconstructed B_c's at CMS
 - Very good resolution ~20-25 MeV
 - Confirmation of two observed decay channels:
 - $B_c^+ \rightarrow J/\psi \pi$ by CDF in 1998
 - $B_c^+ \rightarrow J/\psi 3\pi$ by LHCb in April '12



$\Lambda_b \rightarrow J/\psi \Lambda$ differential cross section


arXiv:1205.0594 accepted by PLB

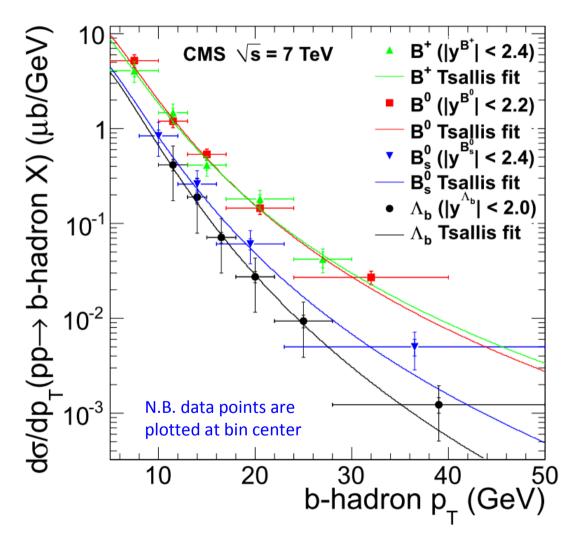
- B-hadron production cross sections provide a critical test of NLO calculations of perturbative QCD and fragmentation models
- Λ_b complements the B⁺, B⁰, B⁰_s measurements already performed by CMS
- Cross section from decay $\Lambda_b \to J/\psi(\to \mu^+\mu^-)\Lambda^0(\to p^+\pi^-)$
- Λ_b reconstruction:
 - J/ψ: 2 opposite sign muons, matched to the trigger objects, with tighter cuts.
 - → A reconstruction (77% purity): 2 tracks forming a very displaced vertex. Proton chosen as highest |p| track.
 - Λ_b candidate obtained by a kinematic vertex fit, constraining the J/ ψ and Λ masses.


$\Lambda_b \rightarrow J/\psi \Lambda$ differential cross section

• Extract signal yield form mass fit. Then calculate average cross section:

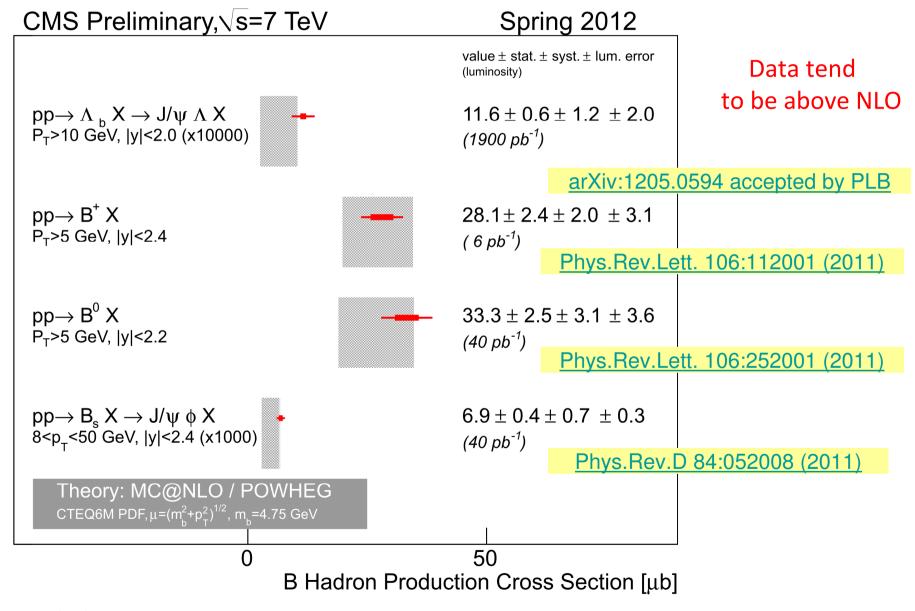
$\Lambda_b \rightarrow J/\psi \Lambda$ differential cross section

- Compare particle to anti-particle production
 - Tests baryon transport models from initial pp state
 - Results compatible with flat line as a function of p_T and y.



Summary of CMS exclusive B measurements

- Unexpectedly ∧_b baryon shows a steeper p_T dependence compared to the B-mesons
- Fit to Tsallis function:


$$\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} = C p_{\mathrm{T}} \left[1 + \frac{\sqrt{p_{\mathrm{T}}^2 + m^2} - m}{nT} \right]^{-n}$$

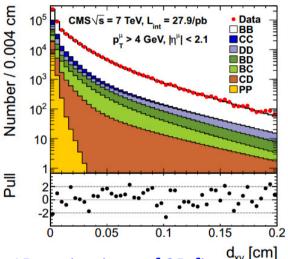
hadron	n (T=1.1 GeV)
B ⁺	5.5 ± 0.3
B ⁰	5.8 ± 0.3
Bs	6.6 ± 0.4
Λb	7.6 ± 0.4

• Similar feature observed by LHCb in measurement of $f_{\Lambda b}/(f_u+f_d)$ vs p_T

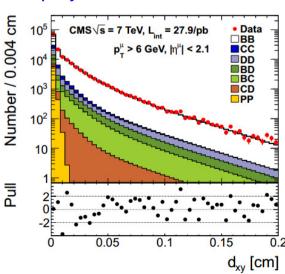
Summary of CMS exclusive B measurements

23/07/2012

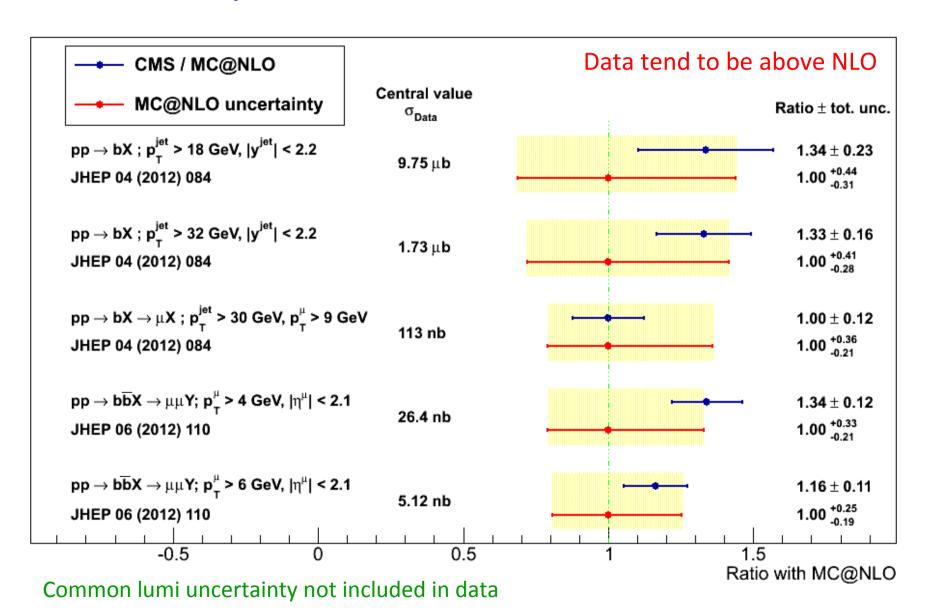
L. Perrozzi - BEACH 2012


Inclusive bb cross section with muon pairs

- Complementary to measurements with jets
- Fraction of $b\overline{b} \rightarrow \mu\mu$ events in data extracted with a 2D template fit to the di- μ impact parameter
 - Distributions for B (bottom), C (charm) and D (decays in flight) taken from simulation
 - − Distribution for P (prompt) from $\Upsilon(1s) \rightarrow \mu^+\mu^-$ decays in data
- High purity (~70%), small total systematic uncertainties both in data and NLO predictions


Source	Uncertainty	
	$p_{\rm T} > 4{ m GeV}$	$p_{\rm T} > 6{\rm GeV}$
Model dependency	5.5	5.1
Impact parameter resolution	2.7	4.0
Monte Carlo precision and fit method	2.2	2.7
Efficiencies and acceptance	6.1	6.2
Total	8.9	9.4

- $\sigma(pp \rightarrow b\overline{b} \rightarrow \mu\mu X)$
 - $(p_T>4GeV, |\eta|<2.1) = 26.4 \pm 0.1(stat) \pm 2.4(syst) \pm 1.1(lumi)$ nb
 - $\sigma_{MC@NLO}(p_T > 4GeV, |\eta| < 2.1) = 19.7 \pm 0.3(stat) +6.5 -4.1(syst) nb$
 - $(p_T > 6 \text{GeV}, |\eta| < 2.1) = 5.12 \pm 0.03(\text{stat}) \pm 0.48(\text{syst}) \pm 0.20(\text{lumi}) \text{ nb}$
 - $\sigma_{MC@NLO}(p_T > 6 \text{GeV}, |\eta| < 2.1) = 4.40 \pm 0.14(\text{stat}) + 1.10 0.84(\text{syst}) \text{ nb}$


JHEP 06 (2012) 110

1D projections of 2D fits

Summary of CMS inclusive B measurements

23/07/2012

Search for the rare decay $D^0 \rightarrow \mu^+ \mu^-$

 W^{\pm}

CMS-PAS-BPH-11-017

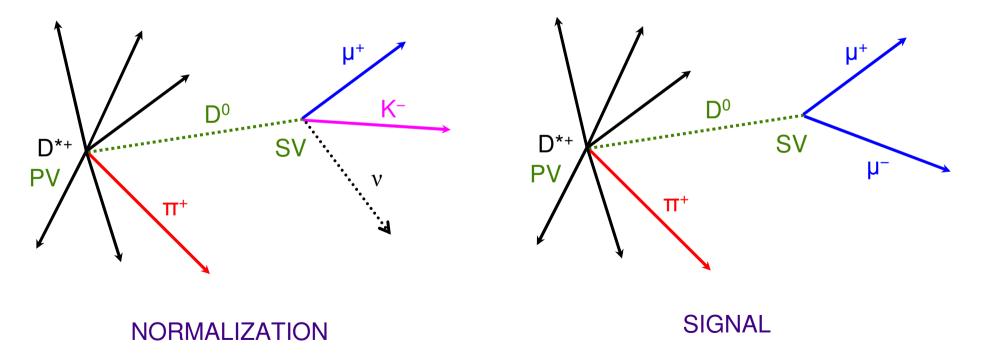
Motivation:

- FCNC forbidden at tree level.
- Standard Model predicts BR ~10⁻¹³
- A difference would indicate New Physics.

LHCb-CONF-2012-005

 W^{\pm}

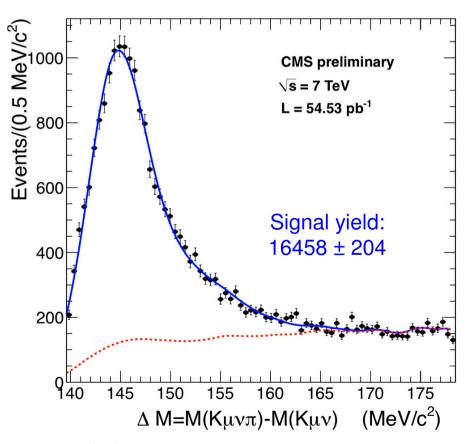
- Current best limit from LHCb (BR < 1.3×10^{-8} @ 95% C.L.)
- Best limit from B factories: Belle (BR < 1.4×10^{-7} @ 90% C.L.).

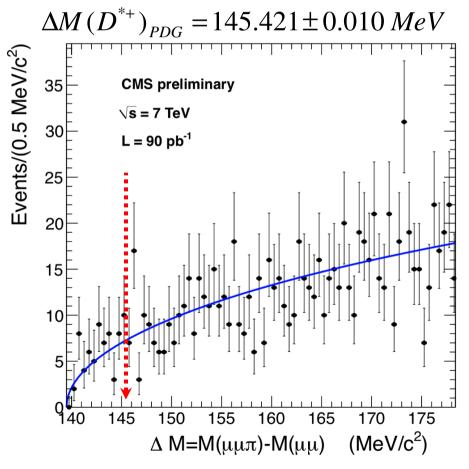

• Strategy:

Phys. Rev. D 81 (2010) 091102

- Calculate the D⁰ → $\mu^+\mu^-$ branching ratio through D^{*+} → D⁰π⁺ (clean sample) using as normalization channel D⁰ → K⁻ μ^+ v; BR = (3.30 ± 0.13)%.
- Normalization channel chosen to cancel out systematic uncertainties and minimize the differences at trigger level. First time that a semi-leptonic channel is chosen.
- Challenge: need a single muon trigger to reveal the normalization channel.

Selection

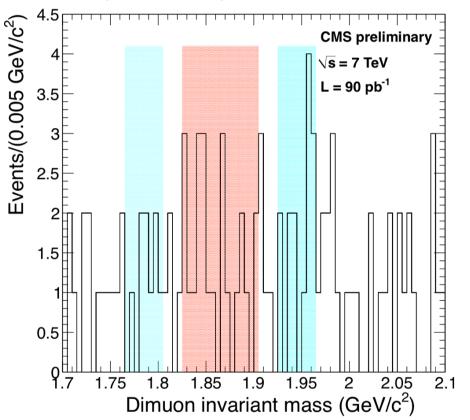

- Total sample: \sim 90 pb⁻¹ (7 data taking periods with increasing muon pT thresholds (3-15 GeV)
- Signatures:
- Muons: tight quality, $|\eta| < 2.1$, $p_T > 3$ GeV, muon firing the trigger has same p_T cut.
- Kaon: tight quality, $|\eta| < 2.1$, pT > 0.8 GeV. p_v reconstructed with kinematical considerations
- PV & SV: vertex probability > 1%. 3D distance significance > 3.
- Phys. Rev. Lett. 62, 1587-1590 (1989)
- Signal only: $\cos \alpha > 0.99$; $\alpha =$ angle between the D0 momentum and the PV-SV direction.
- Prompt pion: track from the PV, $p_T > 0.6$ GeV.



D*+ mass difference

- NORMALIZATION: fit to extract N(Kµv)
- Signal: two gaussians.
- Background: from same sign K-π sample.
- SIGNAL: no evidence of D⁰→µµ from D*+
- Fit background to empirical function:

$$f(\Delta M) = p_1 \times [(\Delta M - M_{\pi})^{1/2} + p_2 \times (\Delta M - M_{\pi})^{3/2}]$$



Results

$$B(D^0 \to \mu^+ \mu^-) \le B(D^0 \to K^- \mu^+ \nu) \times \frac{N(\mu \mu)}{N(K \mu \nu)} \times \frac{a(K \mu \nu)}{a(\mu \mu)} \times \frac{\epsilon_{\text{trig}}(K \mu \nu)}{\epsilon_{\text{trig}}(\mu \mu)} \times \frac{\epsilon_{\text{rec}}(K \mu \nu)}{\epsilon_{\text{rec}}(\mu \mu)}$$

 $|\Delta M - \Delta M_{PDG}| < 3 \text{ MeV}$

- Separately for the 7 data-taking periods.
- N(µµ) is the 90% CL upper limit on the signal yield, obtained from the number of events in the DO mass region and in the sidebands, assuming they obey Poisson statistics.
- Acceptance & efficiency ratios from MC.
- Systematic uncertainties:
 - Acceptance & efficiencies: MC & datadriven method.
 - Underestimated trigger efficiencies.
 - Contamination from

$$D^0 \to K^{*-}(K^-\pi^0)\mu^+\nu$$

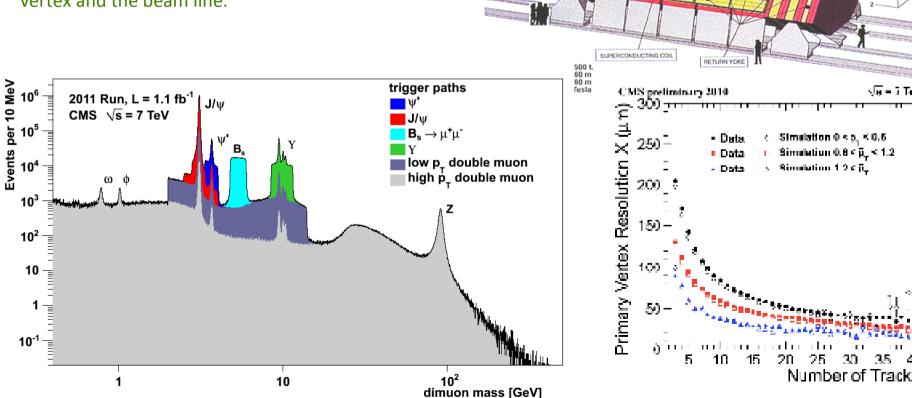
- PDG uncertainty for $\mathcal{B}(D^0 o K\mu
u)$

$$B(D^0 \to \mu^+ \mu^-) \le 5.4 \times 10^{-7} (90\% \,\text{CL})$$

LHCb: 1.3 x 10⁻⁸

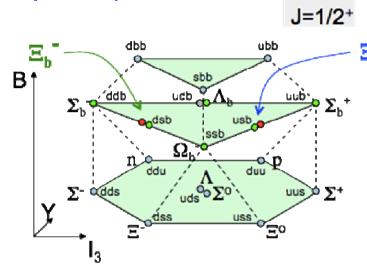
Conclusions

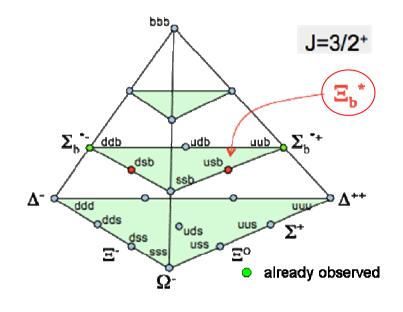
- CMS is producing high quality results on heavy flavor physics.
- Presented results:
 - Observation of a new strange b baryon, the Ξ_h^{*0}
 - Confirmation of $B_c \rightarrow J/\psi \pi B_c \rightarrow J/\psi 3\pi$ decay channel observations
 - First measurement of a b baryon cross section in the LHC. p_T distribution for Λ_b falls steeper in data than in MC predictions as well as w.r.t. to B-meson cross sections.
 - Inclusive $b\overline{b} \to \mu\mu$ cross section measurement with reduced uncertainty on data and NLO prediction
 - Search for the rare decay D^0 → $\mu^+\mu^-$ with limit 5.4x10⁻⁷ @90% C.L.
- More results to come from 2011 data. Analysis of 2012 data in progress.
- Only the most recent results have been presented. Many more results here: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH


Backup slides

HCAL

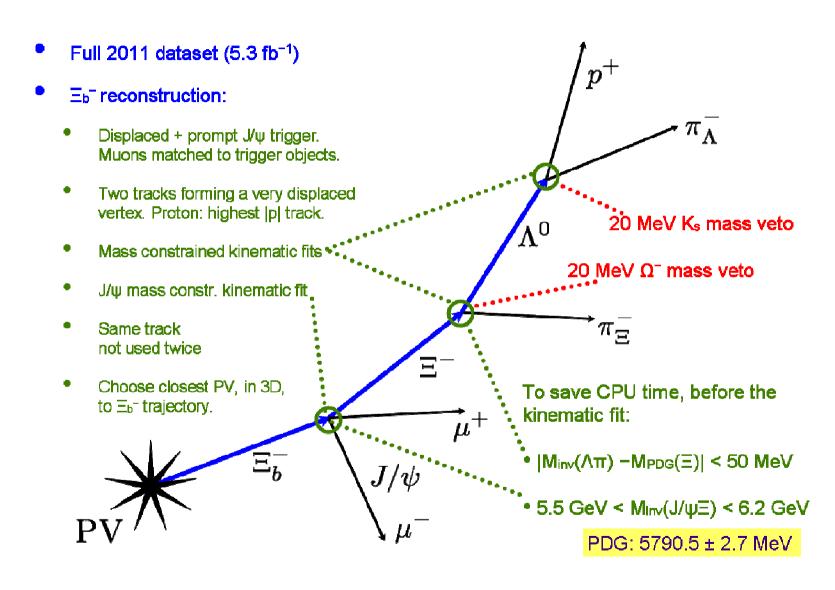
CMS Detector Performance


• All-silicon tracker (pixels and strips) give excellent p_T and vertex position resolutions.


- Trigger:
- di-muon based (opposite sign),
- uses DCA & vertex probability cuts (against PU).
- For B hadrons: 3σ cut in the separation of the di-muon vertex and the beam line.

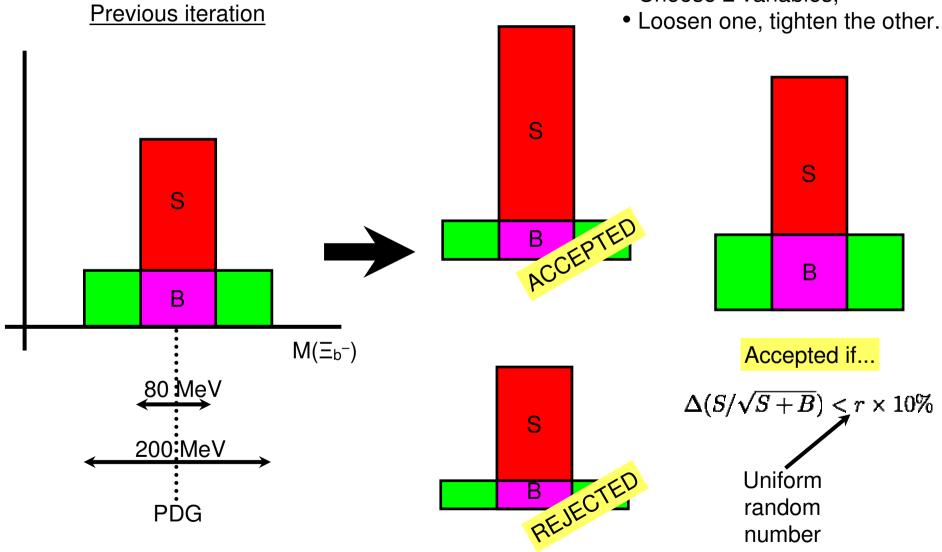
Observation of the Ξ^*_b baryon

B-baryon multiplets:



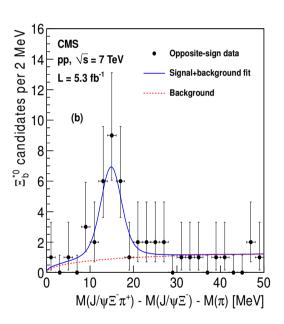
- Charm sector cousin: $\Xi_c(2645)^0 \to \Xi_c^+ \pi^-$ Phys. Rev. Lett. 75, 4364 (1995)
- Expected Q(Ξ_b^{*0}) = M(Ξ_b^{*0}) M(Ξ_b^{-}) M(π^+) ~ 11-29 MeV

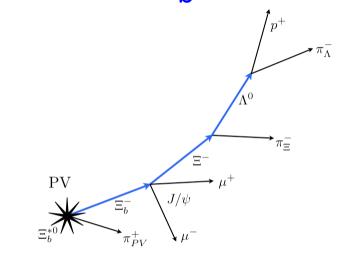
Phys. Rev. D 66, 014502 (2002) Phys. Rev. D 77, 034012 (2008) Phys. Rev. D 79, 014502 (2009) Phys. Rev. D 84, 014025 (2011)

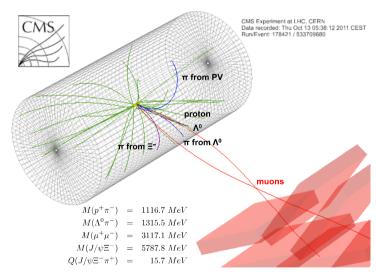

• Given the predicted Q, $\Gamma(\Xi_b^{*0}) < 1$ MeV. arXiv:1203.3378v1 [hep-lat]

Ξ_b^- selection

Ξ_b⁻ selection algorithm Next iteration: randomly...

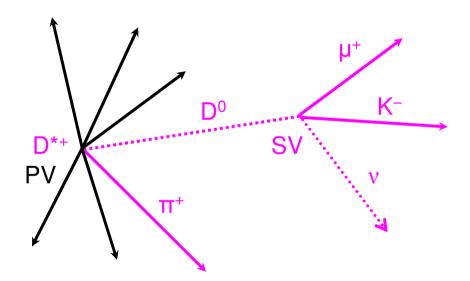

- Choose 2 variables,


First observation of the Ξ_b^{*0} hadron

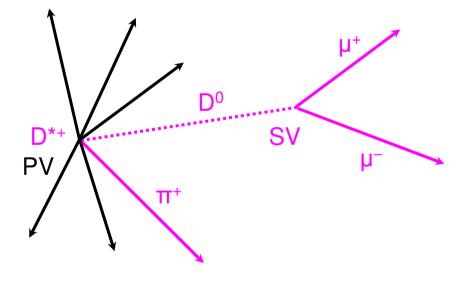

Through the decay chain:

- $\Xi_b^{*0} \rightarrow \Xi_b^- \pi^+$
- $\Xi_b \rightarrow J/\psi (\mu + \mu) \Xi$
- $\Xi \rightarrow \wedge 0 \pi^{-}$
- $\Lambda^0 \rightarrow p^+ \pi^-$

- Mass: 5945.0 ± 2.8 MeV.
- Significance = 6.9 σ

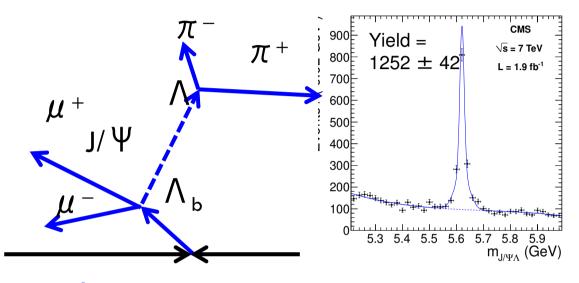


arXiv:1204.5955


Sample & reconstruction

- Total sample: ~90 pb-1:
 - From 2010 (~36 pb−1): 6 data taking periods with increasing muon pT thresholds (3-15 GeV)
 - From 2011: single muon trigger not pre-scaled only for ~54 pb−1 with one threshold (15 GeV).

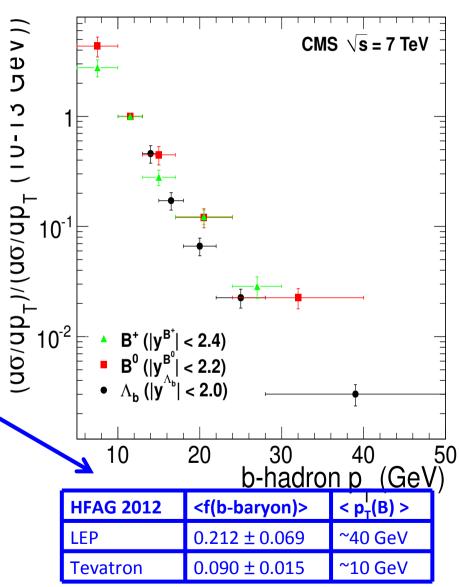
• Signatures:



SIGNAL

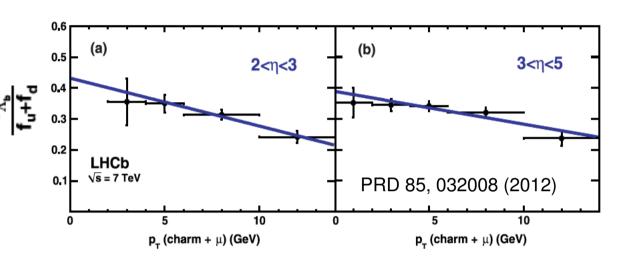
 ϵ

∧_b cross section measurement


 $p_{\mathrm{T}}^{\Lambda_{\mathrm{b}}}$ $n_{\rm sig}$ (%) (GeV) events 10 - 13293 + 22 0.29 ± 0.03 13 - 15 240 ± 18 0.79 ± 0.08 15 - 18 265 ± 19 1.54 ± 0.16 18 - 22 207 ± 16 2.34 ± 0.23 22 - 28 145 ± 14 3.21 ± 0.34 28 - 50 87 ± 11 3.96 ± 0.50

- Λ_h reconstructed in decays to $J/\Psi(\mu^+\mu^-)\Lambda(p\pi)$
- Measure yield and efficiency in bins of p_T and rapidity to determine differential cross section
- Particle-antiparticle differences studied, too

$ y^{\Lambda_{\mathrm{b}}} $	$n_{\rm sig}$	ϵ
	events	(%)
0.0 - 0.3	233 ± 17	0.74 ± 0.09
0.3 - 0.6	256 ± 18	0.77 ± 0.09
0.6 - 0.9	206 ± 16	0.81 ± 0.09
0.9 - 1.2	196 ± 17	0.70 ± 0.08
1.2 - 1.5	189 ± 17	0.67 ± 0.09
1.5 - 2.0	162 ± 18	0.65 ± 0.09


Λ_b cross section compared to mesons

- New Λ_b measurement allows for comparison to B^+ , B^0 and B_s mesons
- Shape vs B p_T shows interesting feature
 - Baryon spectrum falls faster than meson spectra
 - Effect in baryon vs meson hadronization
- Historically, hadronization fractions assumed to be constant, but LEP and Tevatron measurements disagree
- Discrepancy in baryon/meson production could be explained by different p_⊤ spectra

Λ_b cross section compared to mesons

 Similar feature observed by LHCb in measurement of f_{Ab}/(f_u+f_d) vs momentum

- Historically, hadronization fractions assumed to be constant
- However, measurements between LEP and Tevatron not consistent
 - HFAG 2012: Tevatron ($p_T(b) \sim 10 \text{ GeV}$): $f(b\text{-baryon}) = 0.212 \pm 0.069$
 - HFAG 2012: LEP ($p_T(b) \sim 40 \text{ GeV}$): $f(b\text{-baryon}) = 0.090 \pm 0.015$
- Discrepancy in baryon/meson production measurements between Tevatron and LEP could be explained by different $p_{\scriptscriptstyle T}$ spectra

Studies of *beauty* and *charm* quark production and decays with the CMS experiment

Luca Perrozzi (CERN)

On behalf of the CMS collaboration

BEACH 2012, Wichita, July 23rd-28th