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Why are Kaon Decays so rare?

Br(KL → γγ) � 5.47(4) · 10−4Br(KL → µ+µ−) � 6.84(11) · 10−9

Before the charm quark: why are the two Branching ratios

so different in size?
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GIM: charm quark to suppress neutral currents
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Charm Quark Mass
Quadratic GIM suppresses light quark contribution

Sensitive to short distances (SD)
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Contributions to
 No quadratic suppression for KL → γγ

(same for photon penguin)
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Contributions to
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Estimate from
KL→π0γγ

[Isidori et. al. `04]

KL → KS &
KS→π0l+l-

[Mescia et. al. `06]

NLO QCD
[Buchalla et. al. `95]
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End of I: Key Observables
Suppression: CKM, quadratic GIM, and log GIM ⋅ α/4π

KL → π0 l+ l-: long distance pollution (2γ-contribution)
– Z-Penguin & Boxes 1 γ-Penguin and scalar can contribute

KL → μ+ μ-: 2γ-contribution, sensitive to scalar operators

K → π υ ̄ υ: cleanest modes – Only Z-Penguin & Boxes

Hadronic decays: CP violation in mixing εK

Light quark contributions suppressed by
quadratic GIM and small 2nd generation complex phase
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Figure 5: �Xt as a function of MH , in two different renormalisation schemes. The dashed lines

show the LO results, the dashed-dotted lines the LO results including the electroweak corrections

in the large-mt limit. The full two-loop results are represented by the dotted lines. The left panel

shows the results where all parameters are defined in the MS scheme. By contrast, in the right

panel, all parameters apart from α are defined in the on-shell scheme. For comparison, we also

plot in both panels the NLO result, where all masses are defined on-shell and all couplings in the

MS scheme. It is represented by the solid lines.

long distance contributions were calculated in Reference [30] to be

δPc,u = 0.04± 0.02 . (4.7)

The hadronic matrix element of the low-energy effective Hamiltonian can be extracted
from the well-measured Kl3 decays, including isospin breaking and long-distance QED
radiative corrections [27, 32, 33]. The long-distance contributions are contained in the pa-
rameters κ+, including NLO and partially NNLO corrections in chiral perturbation theory.
∆EM denotes the long distance QED corrections [27].

Including the two-loop electroweak corrections to Xt, we find for the branching ratio of
the charged mode

Br(K+ → π+νν̄) = (8.22+0.74
−0.65 ± 0.29)× 10−11 , (4.8)

The first error is related to the uncertainties in the input parameters. The main contri-
butions are (Vcb : 49%, ρ̄ : 22%, αs : 9%, mc : 8%, mt : 7%, η̄ : 4%, sin2 θW : 1%). The
second error quantifies the remaining theoretical uncertainty. In detail, the contributions
are (δPc,u : 49%, Pc : 21%, Xt(QCD) : 17%, κ+

ν
: 8%, Xt(EW) : 7%), respectively. Here

and below, we determine the QCD error on Xt by varying the scale µc between 80 GeV
and 320 GeV. Correspondingly, our central value of Xt is the average of Xt(µ = 80GeV)
and Xt(µ = 320GeV).
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1.46

1.48

1.5

1.52

1.54

1.56

1.58

1.6

120 140 160 180 200

MH [GeV]

LO
large-mt

NLO
NLO, ŝND
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K+ → π+ υ ̄ υ from MW to mc

11

Pc

µc[GeV]1 2
.35

.39

.36 NNLO (QCD)

NLO (EW)
LO (EW)Pc: charm quark contribution

to K+ → π+ υ ̄ υ (30% to BR)
Series converges very well

(NNLO:10%→2.5% uncertainty)
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Nierste; Brod MG]
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Figure 1: One-loop diagrams corresponding to the T-products in Eqs. (2)–(4).

the other hand, we differ from these works in the last step, namely the removal of the
charm as dynamical degrees of freedom. In this case we proceed as in Ref. [9], matching
the operator product expansion of the T-products into an effective theory which includes
also dimension-8 operators. The structure of the local terms, for µIR

<
∼ mc, takes the form

of the following effective Hamiltonian density

H(6+8)
eff (µIR) =

GF√
2

α

2π sin2 θW
λc
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l=e,µ,τ
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X l
c(xc)Q

(6)
l +

1

M2
W
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il

]

. (9)

Neglecting neutrino masses, the only Q(8)
il with non-vanishing coefficients to lowest order

in αs(mc) are

Q(8)
1l = s̄γµ(1 − γ5)d ∂2 [ν̄lγµ(1 − γ5)νl] ,
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2l = (s̄
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Dα)γµ(1 − γ5)(

−→
Dαd) ν̄lγµ(1 − γ5)νl ,

Q(8)
3l = (s̄

←−
Dα)γµ(1 − γ5)d

[

ν̄l(
←−
∂α −

−→
∂α)γµ(1 − γ5)νl

]

. (10)

The operator Q(8)
1l arises by the neutral-current coupling (left diagram in Figure 1), while

Q(8)
2l and Q(8)

3l are generated by the charged-current coupling (right diagram in Figure 1).

The operator Q(8)
3l , which has been considered first in Ref. [8], is the only term which can

induce a CP-conserving contribution to the K2 → π0νlν̄l transition. In agreement with
the results of Ref. [8, 9], we find
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4

No GIM below the charm quark mass scale
higher dimensional operators UV scale dependent
One loop ChiPT calculation approximately cancels 
this scale dependence δPc,u = 0.04± 0.02

[Isidori, Mescia, Smith `05]
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One loop ChiPT calculation approximately cancels 
this scale dependence δPc,u = 0.04± 0.02

[Isidori, Mescia, Smith `05]

Could be calculated on the lattice 
[Isidori, Martinelli, Turchetti `06]



K → π υ ̄ υ: Error Budget 

kappa
2 %

Xt
7 %

Pc
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delta Pcu
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CKM
53 %

Parametric
18 %

BRth(K+→π+υ ̄υ) = 8.2(3)(7) ⋅ 10-11

BRexp(K+→π+υ ̄υ) = 17(11) ⋅ 10-11

[E787, E949 ´08]

NA62 aims at 10% accuracy
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Xt
8 %

kappa
2 %CKM

84 %

Mt
6 %

BRth(KL →π0υ ̄υ) = 2.57(37)(4) ⋅ 10-11

BRexp(K+→π+υ ̄υ) < 6.7 ⋅ 10-8

[E391a ´08]
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Light quark loops in CHPT:
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absorptive part
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Future: Lattice
[N. Christ]
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Residual Theory Uncertainty

15

After Lattice QCD & NNLO progress: ηcc dominant uncertainty

εK is very important for phenomenology: Future improvements?  

Progress has to come from interplay of Lattice & perturbative QCD

parametric
43 %

LD
15 %η_tt

4 %
η_ct
13 %

η_cc
26 %

exp.
= 2.23(1) · 10−3

|�K| = 1.81(28) · 10−3

and the exponent a+ = 2/9 is the so-called magic number for the operator Q+. This scale

dependence is cancelled by the corresponding scale dependence of the hadronic matrix

element, conventionally parameterised by

B̂K =
3

2
b(µ)

�K̄0|Q̃S2|K0�
f 2

KM
2

K

. (2.5)

Now the idea is that instead of using the RGI quantities ηcc and B̂K , we use the lattice

result for BK in a suitably chosen RI-SMOM scheme and “transform ηcc into this scheme”.

By this we mean, strictly speaking, that we use the following full combination

3

2

�K̄0|Q̃S2|K0�(µL)

f 2

KM
2

K

Z
MS→RI-SMOM

C̃cc
S2(µL) (2.6)

evaluated in a RI-SMOM scheme.

Include numerical example for invented J’s for illustration.

2.2 Strategy 2

To get a feeling of what we can expect by matching above the charm scale, let’s play the

naive game again.

Let’s assume we get the matrix elements of the double insertion from somewhere –

a future lattice calculation. Again the logarithms are fixed, they cancel the logs of the

running of C±. Setting the constant parts to zero results in the left picture of Fig. 3 –

good cancellation of scale dependence. Inventing large coefficients (right side) results in

stronger scale dependence, but not quite as bad as in matching in the three-quark theory.

Maybe also we don’t need to go to such low values of µ in the four-quark theory.
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Figure 3: Naive scale independence without and with finite parts above the charm scale. Short-

dashed lines – LO; long-dashed lines – NLO; solid lines – NNLO.

I think to assess if it is worth the effort for the lattice community to perform the

four-flavour matching, one should think (at least) about the following.

3

εK & charm possible for next
generation Lattice QCD[Christ `11]

Requires matching of Lattice and
continuum QCD – toy numerics converge well

Toy example

ηcc
ALat
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[Buchmüller, Wyler]

Top-down approach:
Supersymmetry, LHT-Model, RS-Model …
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Model (in)dependent
Heavy new physics:

KL → π0 ν̄ ν KL → π0 l+l−correlates � �/� . . .

17

(D̄LγµSL)(H†DµH) → d̄LγµsLZµ + ūLγµcLZµ



Model (in)dependent
Heavy new physics:

KL → π0 ν̄ ν KL → π0 l+l−correlates � �/� . . .

[Jäger@NA62 ´09 workshop]
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O†
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(Ot
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Oqde (d̄RSL)(L̄LlR) − − ! ! − − − − − tiny (?) (PQ ?)

O†
qde (D̄LsR)(l̄RLL) − − ! ! ! ! ! − − yes? large tanβ ?

O(1)
ϕq (D̄LγµSL)(H†DµH) ! ! ! hs − − − ! (!) !

O(3)
ϕq (D̄LγµσiSL)(H†DµσiH) ! ! ! hs hs ! ! ! (!) !

Oϕd (d̄RγµsR)(H†DµH) ! ! ! hs − − − ! (!) large tan β (non-MFV)
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† (ūRσµνSL) · (l̄RσµνLL) − − − − − ? ? − − tiny (?)

Oqde (d̄RSL)(L̄LlR) − − ! ! − − − − − tiny (?) (PQ ?)

O†
qde (D̄LsR)(l̄RLL) − − ! ! ! ! ! − − yes? large tanβ ?

O(1)
ϕq (D̄LγµSL)(H†DµH) ! ! ! hs − − − ! (!) !

O(3)
ϕq (D̄LγµσiSL)(H†DµσiH) ! ! ! hs hs ! ! ! (!) !

Oϕd (d̄RγµsR)(H†DµH) ! ! ! hs − − − ! (!) large tan β (non-MFV)

2

study this in a model 
independent way

and classify models
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• Since in various BSM model axial-vector coupling dominates, correlation 

between KL
 ! "0##  and KL

 ! "0l+l$ not a smoking gun signal

One can get fooled: RS versus LHT*

d

s l+

l−

Z

Z(k)

RS LHT

WH

uHuH

Z

s d

l+ l−

Correlations in Randall Sundrum and Little Higgs Models

[Blanke et. al. `08 `09,
Bauer et. al. `09]

The axial vector (ZL-ZR) contribution dominates
the KL→π0 l+ l- decay modes in many models of new physics
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If there are only left-handed currents
εK & KL → π0 υ ̄ υ will be correlated

The chiral enhancement of the 
scalar (s̄R dL)(d̄L sR) operator

breaks this correlation

Can still lead to interesting 
restrictions of the model parameter 

space

RS with common down-type bulk mass
[Plot by S. Casagrande]
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Correlations with εK
Correlations in models with restricted sources of flavour violation 

for example: Gauged SU(3)Qx SU(3)Ux SU(3)D [Grinstein et. al `10] 

Flavour violation of extra gauge bosons suppressed for K → π υυ

Mixing of vector like fermions (t–t´) contributes to ϵK & K → π υυ 

Using results for arbitrary 
perturbative theories

[Brod, Casagrande, MG in preperation]

we find a strong correlation
between ϵK & K → π υυ

BR(K+)x1010

SM20
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u
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M
/
Γ S

MMSSM parameter
scan shows

sensitivity to
A13 & A23

[Isidori et. al. `06]



 Beyond the Z Penguin

3 Experimental Strategy

The two undetectable neutrinos in the final state require the design of an experiment with

redundant measurement of the event kinematics and hermetic vetoes to achieve a background

rejection S/B � 10. Particular care has to be taken to suppress the two-body decays K+ →
π+π0 and K+ → µ+ν which have branching ratios up to 1010 times larger than the expected

signal. The reconstruction of the two body kinematics may suffer from reconstruction tails

and backgrounds can originate if photons from K+ → π+π0 are not detected or if muons from

K+ → µ+ν are mis-identified as pions. To suppress backgrounds from the two body decays,

kinematics and Particle Identification (PID) have to be used in conjunction. Backgrounds

from K+ three- and four-body decays are also potentially dangerous. For convenience we

remind the reader of the most frequent K+ decay modes in Table 3, where they are reported

together with the techniques intended to reject them. The kinematics of the most frequent

K+ decays are compared to that of K+ → π+νν̄ in Figure 3.

Decay Mode Branching Ratio Background Rejection

K+ → µ+ν 63% (called Kµ2) µ PID, Two-Body Kinematics

K+ → π+π0 21% Photon Veto, Two-Body Kinematics

K+ → π+π+π− 6% Charged Particle Veto, Kinematics

K+ → π+π0π0 2% Photon Veto, Kinematics

K+ → π0µ+ν 3% (called K+
µ3) Photon Veto, µ PID

K+ → π0e+ν 5% (called K+
e3) Photon veto, E/p

Table 1: The most frequest K+ decay modes.

Two acceptance regions can be defined to be kinematically free from most of the frequent

kaon decays. The kinematic of the decay under study is schematically sketched in Figure 5,

where the momentum of the incoming kaon PK , the momentum of the outgoing pion Pπ

and the angle between the mother and the daughter particle, θπK are the only measurable

quantities. It is convenient to use the squared missing mass variable, m2
miss, defined under

the hypothesis that the detected charged particle in the final state is a pion:

m2
miss � m2

K

�
1− |Pπ|

|PK|

�
+ m2

π

�
1− |PK |

|Pπ|

�
− |PK ||Pπ|θ2

πK (7)

In Figure 6 the m2
miss for the signal and the kaon decays with the largest branching ratios

are shown for PK = 75 GeV/c. If resolution effects are ignored, the K+ → π+π0 decay

11

!"K
P
K

P"

P#

P#

Figure 5: Kinematics of the decay under study.

is constrained to a line at m2
miss = m2

π0 ; the m2
miss of the three-pion decays shows a lower

bound. The m2
miss of Kµ2 does not appear as a line at m2

miss = 0 because it is wrongly

evaluated, under the assumption that the track is a pion. For this decay the shape depends

on the momentum of the particle in the final state and has m2 = 0 as the upper boundary.

In conclusion, about 92% of the kaon decays are kinematically limited and their rejection

relies on the reconstruction of the kinematics.
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Figure 6: Distribution of the missing mass squared for the signal and the most frequent kaon

decays.

Because the line of the K+ → π+π0 decays lies within the signal region, we are forced to

divide the signal acceptance into two different regions:

• Region I: 0 < m2
miss < m2

π0
− (∆m)2

• Region II: m2
π0

+ (∆m)2 < m2
miss < min m2

miss(π
+π+π−)− (∆m)2

The ∆m term depends on the m2
miss resolution.

13

Experiment: Background from frequent K+-Decays

Measure pπ & θπK

cut on:

22
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3 Experimental Strategy

The two undetectable neutrinos in the final state require the design of an experiment with

redundant measurement of the event kinematics and hermetic vetoes to achieve a background

rejection S/B � 10. Particular care has to be taken to suppress the two-body decays K+ →
π+π0 and K+ → µ+ν which have branching ratios up to 1010 times larger than the expected

signal. The reconstruction of the two body kinematics may suffer from reconstruction tails

and backgrounds can originate if photons from K+ → π+π0 are not detected or if muons from

K+ → µ+ν are mis-identified as pions. To suppress backgrounds from the two body decays,

kinematics and Particle Identification (PID) have to be used in conjunction. Backgrounds

from K+ three- and four-body decays are also potentially dangerous. For convenience we

remind the reader of the most frequent K+ decay modes in Table 3, where they are reported

together with the techniques intended to reject them. The kinematics of the most frequent

K+ decays are compared to that of K+ → π+νν̄ in Figure 3.

Decay Mode Branching Ratio Background Rejection

K+ → µ+ν 63% (called Kµ2) µ PID, Two-Body Kinematics

K+ → π+π0 21% Photon Veto, Two-Body Kinematics

K+ → π+π+π− 6% Charged Particle Veto, Kinematics

K+ → π+π0π0 2% Photon Veto, Kinematics

K+ → π0µ+ν 3% (called K+
µ3) Photon Veto, µ PID

K+ → π0e+ν 5% (called K+
e3) Photon veto, E/p

Table 1: The most frequest K+ decay modes.

Two acceptance regions can be defined to be kinematically free from most of the frequent

kaon decays. The kinematic of the decay under study is schematically sketched in Figure 5,

where the momentum of the incoming kaon PK , the momentum of the outgoing pion Pπ

and the angle between the mother and the daughter particle, θπK are the only measurable

quantities. It is convenient to use the squared missing mass variable, m2
miss, defined under

the hypothesis that the detected charged particle in the final state is a pion:

m2
miss � m2

K

�
1− |Pπ|

|PK|

�
+ m2

π

�
1− |PK |

|Pπ|

�
− |PK ||Pπ|θ2

πK (7)

In Figure 6 the m2
miss for the signal and the kaon decays with the largest branching ratios

are shown for PK = 75 GeV/c. If resolution effects are ignored, the K+ → π+π0 decay
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is constrained to a line at m2
miss = m2

π0 ; the m2
miss of the three-pion decays shows a lower

bound. The m2
miss of Kµ2 does not appear as a line at m2

miss = 0 because it is wrongly

evaluated, under the assumption that the track is a pion. For this decay the shape depends

on the momentum of the particle in the final state and has m2 = 0 as the upper boundary.

In conclusion, about 92% of the kaon decays are kinematically limited and their rejection

relies on the reconstruction of the kinematics.
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divide the signal acceptance into two different regions:

• Region I: 0 < m2
miss < m2

π0
− (∆m)2

• Region II: m2
π0

+ (∆m)2 < m2
miss < min m2

miss(π
+π+π−)− (∆m)2

The ∆m term depends on the m2
miss resolution.

13

Experiment: Background from frequent K+-Decays

Measure pπ & θπK

cut on:

22

!"K
P
K

P"

P#

P#

Figure 5: Kinematics of the decay under study.

is constrained to a line at m2
miss = m2

π0 ; the m2
miss of the three-pion decays shows a lower

bound. The m2
miss of Kµ2 does not appear as a line at m2

miss = 0 because it is wrongly

evaluated, under the assumption that the track is a pion. For this decay the shape depends

on the momentum of the particle in the final state and has m2 = 0 as the upper boundary.

In conclusion, about 92% of the kaon decays are kinematically limited and their rejection

relies on the reconstruction of the kinematics.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
4/c2 GeVmiss

2m

A
rb

it
ra

ry
 U

n
it

s

0"+"$
+K

#+
µ

$+
K

-"+"+"$
+K

##
+"

$
+K

R
e

g
io

n
 I

Region II

Figure 6: Distribution of the missing mass squared for the signal and the most frequent kaon

decays.

Because the line of the K+ → π+π0 decays lies within the signal region, we are forced to

divide the signal acceptance into two different regions:
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Couplings to weakly
interacting light new

particles strongly
constrained by

K+ → π+ + invisible
[Kamenik, Smith `11]
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In light of the current experimental programs:
Exciting times ahead

Improvements from theory side possible
using Lattice QCD and interplay with perturbative QCD
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