
Observation of a New Narrow Resonance
Antonio Boveia, the University of Chicago / Enrico Fermi Institute

on behalf of the ATLAS Collaboration
23 July 2012



 [GeV]HM
50 100 150 200 250 300

2 r
6

0

1

2

3

4

5

6

7

8

9

10

LE
P 

95
%

 C
L

Te
va

tr
on

 9
5%

 C
L

m1

m2

m3

Theory uncertainty
Fit including theory errors
Fit excluding theory errors

G fitter SM

Jul 11

The Standard Model Higgs

2

arXiv:1107.0975v1 [hep-ph] (Gfitter)

U
ni

ta
rit

y 
bo

un
d 

(m
H

 ~
 <

 1
 T

eV
?)

Tr
iv

ia
lit

y 
bo

un
d 

(6
00

~8
00

 G
eV

?)

Excluding direct constraints

Verifying the Standard Model mechanism for EW 
symmetry breaking is one of the main goals of the 
ATLAS experimental program

• Find or rule out SM-like higgs particle(s)
• Study the properties of any such particles found

The simple solution: a single scalar doublet with 
non-zero vacuum expectation value v

• Predicts a new scalar particle (the “Higgs”) 
• Properties (e.g. couplings to SM particles) 

completely fixed by  SM parameters
• Except the actual mass of the Higgs
• Prior to the LHC, direct+indirect constraints point 

toward the range 114.4 < mH < 160 (BSM ~1 TeV)
Analyses by ATLAS of 2011 data excluded Higgs at 
95% CL for almost all masses, if produced at the 
rate expected in the Standard Model

http://arxiv.org/abs/1107.0975v1
http://arxiv.org/abs/1107.0975v1


 [GeV]HM
50 100 150 200 250 300

2 r
6

0

1

2

3

4

5

6

7

8

9

10

LE
P 

95
%

 C
L

Te
va

tr
on

 9
5%

 C
L

m1

m2

m3

Theory uncertainty
Fit including theory errors
Fit excluding theory errors

G fitter SM

Jul 11

The Standard Model Higgs

Verifying the Standard Model mechanism for EW 
symmetry breaking is one of the main goals of the 
ATLAS experimental program

• Find or rule out SM-like higgs particle(s)
• Study the properties of any such particles found

The simple solution: a single scalar doublet with 
non-zero vacuum expectation value v

• Predicts a new scalar particle (the “Higgs”) 
• Properties (e.g. couplings to SM particles) 

completely fixed by  SM parameters
• Except the actual mass of the Higgs
• Prior to the LHC, direct+indirect constraints point 

toward the range 114.4 < mH < 160 (BSM ~1 TeV)
Analyses by ATLAS of 2011 data excluded Higgs at 
95% CL for almost all masses, if produced at the 
rate expected in the Standard Model

• 116.6–119.4 GeV and 122.1–129.2 GeV
not excluded
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How to Look for the Higgs: Theory

Wide variety of production and decay topologies 
relevant at low mass

Analyses of 2011 data in many channels

• included in combined results
• 2012 versions well underway

Today: present analyses of the 2012 data with the three 
most sensitive channels at 120<mH<130 GeV

• H→𝛄𝛄, H→ZZ→4l,H→WW→lνlν
• Each uses all data until the end of June 2012
• Each finalized methods blindly 

Thanks to a huge effort from the theory community, 
NLO/NNLO predictions available for Higgs production 
and backgrounds

• Inclusive signal production cross sections known to 15%
• Uncertainty largely cancels for discovery p-value
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How to Look for the Higgs: ATLAS Detector

H→𝛄𝛄: need very good photon ID, 
excellent EM resolution
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H→ZZ: need efficient lepton reco/ID,
large acceptance

H→WW: need EVERYTHING



The Road to the Higgs
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Search for H→𝛄𝛄
Simple final state: two isolated high-pT photons with pT(1) > 40,  pT(2) > 30 GeV

Low branching fraction (0.2% at 126 GeV) but clean signal

Smooth, non-resonant backgrounds (continuum 𝛄𝛄, DY, 𝛄+jet, multijets)

• Requires powerful photon ID, excellent mass resolution 
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New since Moriond 2012
• Re-analysis of 7 TeV data (4.8 &-1 ) with ~15% gain in sensitivity (optimization done on MC simulation)

Neural network photon ID, refined isolation and vertexing, new VBF (+2j) bin
• New analysis of 8 TeV data (5.9 &-1 ) 

Identical to 2011 re-analysis but using simpler cut-based photon ID and conversion reconstruction
Signal region data hidden during re-optimization and background estimation



Photon Reconstruction and Identification
Photons reconstructed from clusters in LAr calorimeter 
and conversion vertices in the Inner Detector

• Large amount of material in tracker ⇒ half of signal events 

contain at least one converted photon 
Reject fragmentation photon backgrounds (QCD multijet 
and photon+jet) with

• Shower shape variables
• Isolation (next page)

Total efficiency for isolated photons is 85–95%, reduces 
background by 104

• Efficiencies checked with Z+photon, Z->ee, sideband data 
samples
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Remaining background (data sideband estimates):
• 75–80%  continuum diphoton + DY
• ~20% photon+jet
• few% multijet
Composition estimates used only to study background 
parameterization and auxiliary checks



Photon Isolation and Pile-up

Photon isolation:  sum of positive-energy topological clusters in calorimeter with ∆R < 0.4, less than 4 GeV

• Subtract ambient energy density event-by-event to correct for pile-up and underlying event activity
• Switch from cell-based isolation to cluster-based isolation to reduce residual effects of out-of-time pile-up
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CELL-BASED ISOLATION CLUSTER-BASED ISOLATION

Subtraction designed so that average pile-up is zero over 
~600 ns pulse (12 bunches)

Neglects effect of gaps between bunch trains 
well-described by detailed ATLAS sim.
now suppressed using cluster-based isolation



Photon Energy Calibration and Diphoton Mass Resolution
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STABLE AGAINST RAPIDLY 
INCREASING PILE-UP

Electron energy response studied with 
MC and J/Ψ→ee, W→eν, Z→ee data

• Energy scale at MZ known to 0.3%
• Linearity better than 1% 
• Constant term ~1%  in barrel, 2.5% for 

1.37<|η|<1.8 transition to endcap
Photon energy response extrapolated 
from electrons using MC

• Cross checked with photon 
conversions, hadronic interactions, e 
shower shapes, E/p

• Small systematics from material 
effects

Mass resolution not affected by pile-up

• Energy response in data stable vs time
• Simulated resolution stable w.r.t. 

additional pile-up

90% of signal contained with 2σ



Background Modeling

Estimate backgrounds from data

• Mass spectrum is smooth and non-resonant
• Simulation-based estimates subject to relatively large 

theory uncertainties, mismodeling of large background 
rejection factors
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Diphoton Cross Section, PRD 85, 012003 (2012)

Multijets

Photon+jet

Diphoton

Higgs



Background Modeling
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Central and Rest divided
into pT t < 60 GeV
and pT t > 60 GeV
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Divide sample into classes of events with similar sensitivity 
& resolution

•  9 categories according to resolution (central/forward, 
converted/unconverted, H pT perpendicular to thrust axis)

• 1 additional category for VBF (+2j) events

Fit mass distribution separately in each



Choice of Background Parameterization

The choice of the background function is critical:

• Enough flexibility to match the shape of the background in the data (no spurious signals)
• Not so much flexibility that its prediction is imprecise or could hide an excess (accurate model of background)

A large number of potential background functions were considered:

• Single/double exponentials
• Exponential with modified turn-on

Functions validated on high-statistics simulation of all backgrounds (SHERPA/DIPHOX/Resbos/Pythia) and on  sideband 
data

• For each event category, the function with the best expected sensitivity chosen from all functions giving potential biases of < 10% of 
expected signal or < 20% expected uncertainty on fitted signal yield

• Systematic uncertainty from choice of parametrization estimated from S+B fit results with a given parametrization to high statistics 
background samples
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• Exponentials of 2nd and 3rd-order polynomials
• Other polynomials of various orders

EXAMPLE: 7 TeV UNCONV/CENTRAL/LOW



Main Systematics
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Up to 25%

(Background modeling uncertainties on previous slide)



Results

Sum over all categories of data, signal MC, and fitted background predictions(nominal result)
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Results
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Inclusive analysis with no categories (cross check)
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Consistency with Background

Maximum deviation from background 
expectation at mH=126.5 GeV

• Local significance of 4.5σ(exp. 2.4σ)

• 7 TeV: 3.3σ (exp 1.6σ) 126 GeV

• 8 TeV: 3.3σ (exp 1.9σ) 127 GeV
• Global significance with LEE effect (110–

150 GeV) is 3.6σ
• Analysis without categories: 3.5σ

(local, 4th order polynomial background, no 
photon energy syst. (reduce by 0.1–0.2σ))

18



Fitted Signal Strength

Best combined fit for mH = 126.5 GeV  is 1.9±0.5 times the SM prediction

• Results compatible across the 10 categories

19



Search for H→ZZ*→4l
Very clean final state: select four isolated leptons (e/μ) and 
look for a peak in m4l

• Four lepton requirement already suppresses most backgrounds 
to a negligible level

• Remaining backgrounds are “irreducible” continuum ZZ 
(leading source of real four-lepton events in the SM) and Z+jets, 
top, Z+bb (leading sources of <4 real lepton + 1 or more fake 
leptons)

Many-lepton signal requires large acceptance, high 
reconstruction and identification (isolation) efficiencies

• At least one of the four leptons is often forward or very low pT 

(mH < 160 GeV ⇒ Z Z* )

• For 2012, improved electron reconstruction and ID
(e.g. stable against pile-up)

• Additional muon acceptance (|η|<0.1, 2.5<|η|<2.7)
• Re-optimization for low mass (finalized before looking at 2012 

data)
• Re-analysis of 2011 data
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Selection Original Optimised 

Lepton pT  20,20,7,7 20,15,10,7/6  
m12 selection |m12-mZ|<15  50<m12<106  
m34 selection mmin<m34<115 mmin<m34<115 



Search for H→ZZ*→4l
Very clean final state: select four isolated leptons (e/μ) and 
look for a peak in m4l

• Four lepton requirement already suppresses most backgrounds 
to a negligible level

• Remaining backgrounds are “irreducible” continuum ZZ 
(leading source of real four-lepton events in the SM) and Z+jets, 
top, Z+bb (leading sources of <4 real lepton + 1 or more fake 
leptons)

Many-lepton signal requires large acceptance, high 
reconstruction and identification (isolation) efficiencies

• At least one of the four leptons is often forward or very low pT 

(mH < 160 GeV ⇒ Z Z* )

• For 2012, improved electron reconstruction and ID
(e.g. stable against pile-up)

• Additional muon acceptance (|η|<0.1, 2.5<|η|<2.7)
• Re-optimization for low mass (finalized before looking at 2012 

data)
• Re-analysis of 2011 data
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Efficiency (%)   4e 
2011 data (old) 27 18 14 
2011 data (new) 43 23 17 
2012 data (new) 41 27 23 



Mass Reconstruction
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Constrain leading lepton pair to mZ for m4l < 190 GeV

• Four-body mass resolution varies from 1.8 GeV (four muon) to 2.5 GeV (four electron)

• ~80% of signal contained within 2σ



Background Estimation

Dominant background is below-threshold 
continuum ZZ* production

• Predicted by full simulation
• Normalization checked against data

Backgrounds from Z+jets and tt also important at 
low pT

• Reduced by the isolation and impact parameter 
cuts,
largest for low mass electron pairs

• Predict Z+dimuon background from Zbb and tt 
using bb-enriched control data
• No isolation on low-mass muon pair, fail impact 

parameter cut
• Extract normalization from data CR, 

extrapolate Zbb and tt to signal region
• Predict Z+dielectron background from sidebands 

in electron ID variables
• Backgrounds from photon conversion, hadronic 

fakes, and semileptonic heavy-flavor decays
• Relax selection for templates, extract 

normalization in signal region with fit using 
innermost pixel hit, TRT high-threshold, and 
calorimeter shape variables

• Cross check with same-sign data

23

Z+dimuon Control Data

Z+ee Background Fits



Background Estimation

Dominant background is below-threshold 
continuum ZZ* production

• Predicted by full simulation
• Normalization checked against data

Backgrounds from Z+jets and tt also important at 
low pT

• Reduced by the isolation and impact parameter 
cuts,
largest for low mass electron pairs

• Predict Z+dimuon background from Zbb and tt 
using bb-enriched control data
• No isolation on low-mass muon pair, fail impact 

parameter cut
• Extract normalization from data CR, 

extrapolate Zbb and tt to signal region
• Predict Z+dielectron background from sidebands 

in electron ID variables
• Backgrounds from photon conversion, hadronic 

fakes, and semileptonic heavy-flavor decays
• Relax selection for templates, extract 

normalization in signal region with fit using 
innermost pixel hit, TRT high-threshold, and 
calorimeter shape variables

• Cross check with same-sign data
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Low-Mass Same-Sign Data



Results

For m4l > 160 GeV, observe 20–30% more events 
than predicted

• Event characteristics consistent with ZZ production
• Reported in the ATLAS ZZ cross section 

measurement

25

Obs: 88
Exp: 71+/-5

Obs: 142
Exp: 109+/-7



Results at Low Mass

Event counts for 120 < m4l < 130 GeV:

Distribution of excess across channels
is consistent with ZZ decay
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Richard Hawkings 

7+8 TeV   4e 
Background 1.3 0.1 2.2 0.2 1.6 0.2 

Data 6 5 2 

m
H
=125 GeV 2.1 0.3 2.3 0.3 0.9 0.1 

S/B 1.6 1.0 0.6 

Sum
5.1±0.3

13
5.3±0.4
1.0
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Consistency with Background

Most significant deviation from background-only hypothesis at mH = 125 GeV

• 3.4σ local significance  (2.1σ with LEE over 110–600 GeV)
• Similar contributions from 2011 and 2012 datasets
• Compatible with rate expected for SM Higgs with best fit signal strength for 125 GeV of 1.3 ± 0.6 the SM prediction
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Combination of H→𝛄𝛄 and H→ZZ*→4l
Most recent combination: all available 7 TeV search results plus 𝛄𝛄 and ZZ*→4l at 8 TeV

• Excludes SM Higgs across almost entire mass range; pushes down to small fraction of SM expectation for large swath of 
possible masses

• New 8 TeV result for WW not yet included   
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Combination of H→𝛄𝛄 and H→ZZ*→4l
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Maximum excess observed at mH = 126.5 GeV with 
local significance of 5.0σ

• Expectation for mH = 126.5 GeV SM Higgs: 4.6σ
• Global significance: 4.1–4.3 σ for LEE over 110–600 

or 110–150 GeV
• Consistent across multiple channels, time



Combination of H→𝛄𝛄 and H→ZZ*→4l
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Maximum excess observed at mH = 126.5 GeV with 
local significance of 5.0σ

• Expectation for mH = 126.5 GeV SM Higgs: 4.6σ
• Global significance: 4.1–4.3σ for LEE over 110–600 

or 110–150 GeV
• Consistent across multiple channels, time



Are the separate excesses consistent?
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Search for H→WW*→lνlν
Not simple nor is it a clean final state

• Large signal expectation (H→WW*  branching fraction is 23% at mH =126 GeV)

• Large, complex mixture of backgrounds (continuum WW, W+jets, W𝛄(*), DY, top)
• Two neutrinos => signal is a broad excess in transverse mass distribution
• Involves entire detector: electrons, muons, jets, MET, b tagging

Shape in transverse mass is useful, but the analysis is largely a counting experiment:
need to understand the normalization of several difficult backgrounds to a challenging level of precision

33

NEW FOR 8 TeV



1. Require exactly two isolated leptons (e+μ) with 
opposite charges to reject large W+X and multijet 
backgrounds

• pT(1) > 25 GeV, pT(2) > 15 GeV
• Analysis performed separately in e+μ  and 
μ+e channels (distinguished by the flavor of the 
leading pT lepton)

2. Dilepton invariant mass mll > 10 GeV to reject 
DY backgrounds (e.g. taus)

3. Large missing transverse momentum (projected 
MET > 25 GeV) rejects DY

• 2012 analysis currently 
discards ee/μμ  events due 
to increased difficulty of 
DY background at higher 
pile-up 

4. Divide analysis into 0, 1, and >=2-jet categories

• jet counting: ET > 25 GeV and |η| < 2.5 or
                                ET > 30 GeV and 2.5 < |η| < 4.5

• top background increases rapidly with njets 

Selecting H→WW*→lνlν Events
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Further Selection, 0-jet bin

1. njets = 0

2. High dilepton transverse momentum (pTll > 30 GeV)

3. Low dilepton mass (mll < 50 GeV)

4. Exploit spin correlation in scalar decays
     (∆φll < 1.8 rad)
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Further Selection, 1-jet bin

1. njets = 1, no b-tagged jets

2. Balanced above-threshold momentum:
     small vector sum of leptons, jets, and MET
       (|pTtot| < 30 GeV)

• Rejects top events with sub-threshold jets

3. Z→ττ veto (|mττ − mZ| < 25 GeV)

4. Low dilepton mass (mll < 50 GeV)

5. Exploit spin correlation in scalar decays
     (Δφll < 1.8 rad)

Further Selection, VBF bin

1. njets ≥ 2, no b-tagged jets

2. |∆Yjj| > 3.8

3. Central jet veto (no tag jets above 20 GeV)

4. mjj > 500 GeV

5. Balanced above-threshold momentum:
     small vector sum of leptons, jets, and MET
      (|pTtot| < 30 GeV)

6. Z→ττ veto (|mττ − mZ| < 25 GeV)

7. Low dilepton mass (mll < 80 GeV)

8. Exploit spin correlation in scalar decays
     (Δφll < 1.8 rad)



Backgrounds: Continuum WW Control Region

Enrich sample in WW events: remove cut on ∆φll , require mll > 80 GeV
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Extract normalization of WW simulation after deriving other predictions as for signal region:

• 0-jet: SF = 1.06 ± 0.06 (stat) 
• 1-jet: SF = 0.99 ± 0.15 (stat)

Then use WW MC to extrapolate to signal region.

Total uncertainty after including extrapolation/theory uncertainties:

• 0-jet:  13% 
• 1-jet:   42%



Backgrounds: Top Control Regions
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Normalization for the top prediction in the 0-
jet bin is the product of:

• Re-normalizing the prediction from top 
simulation to match the yield in data prior to 
the jet veto

• Correcting the jet veto efficiency in simulation 
using the fraction of events with zero 
additional jets in events with at least one b-tag 

• Total SF = 1.11 ± 0.06 (stat).
• Total top uncertainty is 17%.

Normalization for the top prediction in the 1-
jet and VBF bins:

• Enrich samples in top events by inverting the 
b-tag veto, removing  cuts on ∆φll  and mll

• 1-jet SF: 1.11 ± 0.05 (stat)
 (36% total top uncertainty)

• VBF SF:  1.05 ± 0.01 (stat)
(70% total top uncertainty)



Backgrounds: W+jets and Same-Sign Control Regions
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Fully data-driven estimate:

• In data samples dominated by dijet events, 
measure the ratio of the number of fully-
identified lepton candidates passing all 
selections to the number which are anti-
identified
• Correct for real leptons contributed by W/Z/

Wγ/Wγ∗/WZ* events present in the sample
• Multiply ratio (the “fake factor,” measured vs 

pT) to numbers of events with anti-identified 
leptons in the nominal data.

Systematic uncertainties from:

• Dependence of the fake factors on jet sample 
composition (QCD multijet vs. W+jets, heavy 
flavor content)

• Triggering effects
• Real lepton subtraction

Total uncertainty on W+jets prediction is ~40% for 
electron fakes and ~60% for muon fakes

Same-sign control sample tests combination of 
W+jets, Wγ(∗), WZ(∗), and Z(∗)Z(∗) predictions

• Good agreement observed
• Wγ  also cross checked using sample enriched in 

conversions (inner pixel veto)



Results

Uncertainties shown in this table due to MC statistics only

Signal numbers for mH = 125 GeV
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Results

VBF not shown (2 events observed vs 1.4 ± 0.4 background expected)
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Results
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After requiring 0.75 mH < mT < mH :

Signal numbers for mH = 125 GeV



Results
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Combined 0-jet channels



Results
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Combined 1-jet channels



Results
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Background-subtracted transverse mass distribution
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Consistency with Background

Significant excess of events observed for mH < 150 GeV in 8 TeV data

• Poor mass resolution ⇒ broad excess

• p-value at mH = 120 GeV corresponds to 3.2σ
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Consistency with Background

Significant excess of events observed for mH < 150 GeV in 8 TeV data

• Poor mass resolution ⇒ broad excess

• p-value at mH = 120 GeV corresponds to 3.2σ 

Statistical combination with prior 2011 result reduces significance 

• p-value at mH = 125 GeV corresponds to 2.8σ
• fitted signal strength is 1.4 ± 0.5 times the SM expectation at mH = 125 GeV
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Are the separate excesses consistent?
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Are the separate excesses consistent?
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Summary

Significant resonant excesses found in searches for H→𝛄𝛄 and 
H→ZZ*→4l

• Combined 5σ local significance
• Individual local significances of 4.5σ and 3.5σ, respectively
• Consistent in mass (~126.5 GeV), across subchannels, across time
• Compatible with the SM Higgs boson

New evidence found in the search for H→WW

• Local significance of 2.8σ at mH = 125 GeV
• Consistent across two subchannels
• Compatible results from separate 7 TeV and 8 TeV analyses,

consistent with the SM Higgs boson

ATLAS now excludes the Higgs across a wide range of possible masses

• SM Higgs excluded for mH from 110–122.6 GeV and from 129.7–
558 GeV at 95% CL

• Pushing sensitivity well below the SM expectation for many mH
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