Measurements of semileptonic mixing asymmetries in $B_{(s)}^0$ mesons

BEACH Conference, Wichita, Kansas; 24th July 2012

B Meson Oscillations and CPV

Neutral B mesons oscillate into their antiparticles via weak interactions:

Oscillations very well-established in both B⁰ and B_s⁰ systems:

$$\Delta M_d = 0.507 \pm 0.004 \text{ ps}^{-1}$$

$$\Delta M_s = 17.69 \pm 0.08 \text{ ps}^{-1}$$

'slow' mixing: probability of oscillation prior to decay depends strongly on decay time;

'fast' mixing: experimentally, ~50% oscillation probability regardless of decay time;

Complex phase in CKM matrix \Rightarrow $P[B_{(s)}^0 \to \overline{B}_{(s)}^0] \stackrel{?}{\neq} P[\overline{B}_{(s)}^0 \to B_{(s)}^0]$

Studies of asymmetries in mixing are a sensitive probe of the SM.

B Meson Oscillations and CPV

Define semileptonic mixing asymmetry:

$$a_{sl}^q = \frac{\Delta \Gamma_q}{\Delta M_q} \cdot \tan(\phi_q) = \frac{\Gamma(\bar{B}_q^0 \to B_q^0 \to \ell^+ X) - \Gamma(B_q^0 \to \bar{B}_q^0 \to \ell^- X)}{\Gamma(\bar{B}_q^0 \to B_q^0 \to \ell^+ X) + \Gamma(B_q^0 \to \bar{B}_q^0 \to \ell^- X)}$$

SM values for both B^0 and B^0_s are negligible compared to experimental precision:

$$a_{sl}^{d} = (-0.041 \pm 0.006)\%$$
 $a_{sl}^{s} = (-0.0019 \pm 0.0003)\%$
 $a_{sl}^{d} = (-0.05 \pm 0.56)\%$
 $a_{sl}^{s} = (-0.17 \pm 0.92)\%$

SM Predictions

Current WA value from B Factories

Previous D0 measurement

Any significant deviation from zero is hence a signal of new physics.

Same-sign Dimuon Asymmetry

D0, 2010-2011 (presented at BEACH 2010)

- Huge statistics;
- Need great care in understanding sources of muons, and related background asymmetries;
- Measure combination of semileptonic mixing asymmetries from B⁰ and B_s⁰;
- Use impact parameter dependence to measure a_{sl}^d and a_{sl}^s separately:

$$a_{sl}^d = (-0.12 \pm 0.52)\%$$

$$a_{s1}^s = (-1.81 \pm 1.06)\%$$

3.9σ disagreement with SM prediction

Need separate measurements of a^d_{sl} and a^s_{sl} – subject of this talk!

Tevatron accelerator located at the Fermilab site, 30 miles west of Chicago;

Collided protons and antiprotons at $\sqrt{s} = 1.96 \text{ TeV}$

No production asymmetries: symmetric initial state

Collisions ended in September 2011

The D0 Detector

D0: Typical general-purpose detector

Silicon microstrip and scintillating fiber tracking system

Muon tracking and scintillators located outside calorimeter, with thick shielding to suppress hadronic punchthrough

Wide acceptance $|\eta(\mu)| \leq 2$

Polarities of tracking and muon magnets regularly reversed: removes first order detector asymmetries (e.g. due to range-out effects)

Events weighted to ensure equal contributions from all four polarity configurations

The D0 Detector

One decay channel for B_s^0 :

$$B_s^{\ 0} \rightarrow \mu^+ \nu D_s^{\ -} X$$
 with $D_s^{\ -} \rightarrow \phi \pi^-, \phi \rightarrow K^+ K^-$

For each channel, raw asymmetry is extracted by fitting resonances in invariant mass to count $\mu D_{(s)}^{(*)\pm}$ signal yield:

$$A = \frac{N_{\mu^+ D^{(*)-}} - N_{\mu^- D^{(*)+}}}{N_{\mu^+ D^{(*)-}} + N_{\mu^- D^{(*)+}}} \equiv \frac{N_{\text{diff}}}{N_{\text{sum}}}$$

This is then related to the semileptonic mixing asymmetry via:

$$a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}}$$

A_{BG}: detector-related asymmetries (e.g. positive kaons have higher detection efficiency).

 F_B^{osc} : Many 'signal' events are from direct $B_{(s)}^{0}$ decays, B^+ decays, prompt $cc \rightarrow D^{(*)\pm}$ production, so dilute the sample.

Two decay channels for B^0 :

1)
$$B^0 \rightarrow \mu^+ \nu D^- X$$
 with $D^- \rightarrow K^+ \pi^- \pi^-$

2)
$$B^0 \rightarrow \mu^+ \nu D^{*-} X$$
 with $D^{*-} \rightarrow D^0 \pi^-$, $D^0 \rightarrow K^+ \pi^-$

For each channel, raw asymmetry is extracted by fitting resonances in invariant mass to count $\mu D_{(s)}^{(*)\pm}$ signal yield:

$$A = \frac{N_{\mu^+ D^{(*)-}} - N_{\mu^- D^{(*)+}}}{N_{\mu^+ D^{(*)-}} + N_{\mu^- D^{(*)+}}} \equiv \frac{N_{\text{diff}}}{N_{\text{sum}}}$$

This is then related to the semileptonic mixing asymmetry via:

$$a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}}$$

 F_B^{osc} : Many 'signal' events are from direct $B_{(s)}^{0}$ decays, B^+ decays, prompt $cc \rightarrow D^{(*)\pm}$ production, so dilute the sample.

Two decay channels for B^0 :

1)
$$B^0 \rightarrow \mu^+ \nu D^- X$$
 with $D^- \rightarrow K^+ \pi^- \pi^-$

2)
$$B^0 \rightarrow \mu^+ \nu D^{*-} X$$
 with $D^{*-} \rightarrow D^0 \pi^-$, $D^0 \rightarrow K^+ \pi^-$

For each channel, raw asymmetry is extracted by fitting resonances in invariant mass to count $\mu D_{(s)}^{(*)\pm}$ signal yield:

$$A = \frac{N_{\mu^+ D^{(*)-}} - N_{\mu^- D^{(*)+}}}{N_{\mu^+ D^{(*)-}} + N_{\mu^- D^{(*)+}}} \equiv \frac{N_{\text{diff}}}{N_{\text{sum}}}$$

This is then related to the semileptonic mixing asymmetry via:

$$a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}}$$

 F_B^{osc} : Many 'signal' events are from direct $B_{(s)}^{0}$ decays, B^+ decays, prompt $cc \rightarrow D^{(*)\pm}$ production, so dilute the sample.

Three main ingredients for each channel:

- 1) Measure A by fitting mass distributions for sum and difference;
- 2) Measure A_{BG} using data-driven methods from other channels;
- 3) Determine $\mathbb{F}_{\mathbf{B}}^{\mathbf{osc}}$ using simulation

...then combine inputs to extract a_{sl}^q .

Single time-integrated measurement for a^s_{sl}

Six measurements in bins of visible-proper-decay-length (VPDL) for a^d_{sl} : take advantage of 'turning on' of mixing signal for longer lifetimes.

First two bins used as **control region** – negligible signal.

Event Selection

Channels use **common selections** where possible:

- Single and dimuon **triggers** without impact parameter requirements;
- High quality track in **muon** system, associated with central track:
 - \triangleright p_T > 2 GeV; p_{tot} > 3 GeV;
- 3 additional tracks with total charge $q(ttt) = -q(\mu)$:
 - $p_T > 0.7 \text{ GeV}$; $(p_T > 0.5 \text{ GeV for pion in B}_s^0 \text{ decay})$
- Four tracks must be associated with same Primary Vertex;

Event Selection

Channels use **common selections** where possible:

- Single and dimuon triggers without impact parameter requirements;
- High quality track in muon system, associated with central track:
 - \triangleright p_T > 2 GeV; p_{tot} > 3 GeV;
- 3 additional tracks with total charge $q(ttt) = -q(\mu)$:
 - $p_T > 0.7 \text{ GeV}$; $(p_T > 0.5 \text{ GeV for pion in B}_s^0 \text{ decay})$
- Four tracks must be associated with same Primary Vertex;

Preselection: Loose, channel-specific reconstruction/vertexing requirements;

Multivariate techniques for final selection.

Optimise to maximise signal significance $N_S / \sqrt{(N_S + N_B)}$ – performed separately for each VPDL bin in a_{sl}^d measurement

Raw Asymmetry Extraction

$$\begin{cases} a_{\rm sl}^q = A + A_{\rm BG} \\ F_{B_{(s)}^0}^{\rm osc} \end{cases}$$

Extracting Raw Asymmetries

Construct invariant mass distributions that can be fitted to extract $\mu D_{(s)}^{(*)\pm}$ yields:

- $\mathbf{M}(\boldsymbol{\varphi}\boldsymbol{\pi})$ for $\mathbf{D}_{\mathbf{s}}^{\pm}$ channel;
- $M(K\pi\pi)$ for D^{\pm} channel;
- $\Delta \mathbf{M} = \mathbf{M}(\mathbf{D}^0 \pi) \mathbf{M}(\mathbf{D}^0)$ for $\mathbf{D}^{*\pm}$ channel.

Fill charge-specific histograms H[±] for each distribution, and use to construct sum and difference:

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

$$H_{\text{sum}} = H^+ + H^-$$
$$H_{\text{diff}} = H^+ - H^-$$

Perform simultaneous binned χ^2 fit of sum and difference to extract asymmetry:

$$\chi^{2} = \sum_{\text{bin } i=1}^{N} \left[\left(\frac{H_{\text{sum}}^{i} - F_{\text{sum}}^{i}}{\sigma_{\text{sum}}^{i}} \right)^{2} + \left(\frac{H_{\text{diff}}^{i} - F_{\text{diff}}^{i}}{\sigma_{\text{diff}}^{i}} \right)^{2} \right]$$

$$\sigma_{\text{sum}}^{i} = \sigma_{\text{diff}}^{i} = \sqrt{H_{\text{sum}}^{i}}$$

 $F_{\text{sum(diff)}}^{i}$ are fit functions $F_{\text{sum(diff)}}$ integrated over width of bin i.

Sum/Difference Fit: D_s[±]

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

Single time-integrated fit

Smaller peak from $B^0 \rightarrow \mu\nu D^+$

Also measure asymmetry in this component:

$$A_{D+} = (-1.21 \pm 1.00)\%$$

Negligible asymmetry in background $A_{BG} = (0.00 \pm 0.11)\%$ Strong indication that track reconstruction asymmetry is small.

Example Fits: D[±]

 $a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$

For [0.10 < VPDL(B) < 0.20] cm (Bin with highest a_{sl}^d sensitivity)

 $A = 1.48 \pm 0.41 \%$

Hyperbolic tangent models effects of partially-reconstructed decays (validated in MC), e.g.

 $D^- \rightarrow K^+ \pi^- \pi^- \pi^0$ (threshold at 1.70 \rightarrow 1.75 GeV)

 $D^{*-} \rightarrow \pi^{-}(D^{0})K^{+}\pi^{-}\pi^{0}$ (threshold at 1.80 \rightarrow 1.90 GeV)

Significant positive asymmetry: expected due to kaon reconstruction effects.

Example Fits: D*±

 $a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$

For [0.10 < VPDL(B) < 0.20] cm (Bin with highest a_{sl}^d sensitivity)

 $A = 2.11 \pm 0.44 \%$

Proximity of pion threshold skews shapes of signal and background, and necessitates studies to understand BG shape.

Charge-randomised ensemble tests confirm asymmetry extraction is unbiased, and with correct uncertainties (all channels)

Systematic Uncertainties

$$a_{\rm sl}^q = \underbrace{A + A_{\rm BG}}_{F_{B_{(s)}}^{\rm osc}}$$

Allow simultaneous variations in several aspects of fits:

- Bin widths, upper and lower fitting limits
- Fitting functions (sum/diff for both signal and BG components)
- Alternative weighting scheme
- For D*, use different M(D⁰) mass window

Examine effect on final measured asymmetry over this set of fit variants.

 μD^{\pm} (similar for other channels)

Source	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	
Source	-0.10 - 0.00 cm	$0.00-0.02~{\rm cm}$	$0.02-0.05~\mathrm{cm}$	0.05 - 0.10 cm	$0.10-0.20~{\rm cm}$	$0.20-0.60~\mathrm{cm}$	
μD channel							
Bin width	0.09%	0.01%	0.01%	0.01%	0.00%	0.05%	
Fit limits	0.17%	0.06%	0.08%	0.05%	0.03%	0.12%	
Magnet weighting	0.02%	0.00%	0.00%	0.00%	0.00%	0.01%	
Signal model	0.03%	0.03%	0.01%	0.04%	0.01%	0.01%	
Background model (sum)	0.03%	0.00%	0.01%	0.01%	0.01%	0.00%	
Background model (diff)	0.01%	0.00%	0.01%	0.00%	0.01%	0.02%	
Combined systematic	$\pm 0.19\%$	$\pm 0.07\%$	$\pm 0.08\%$	$\pm 0.07\%$	$\pm 0.05\%$	$\pm 0.13\%$	
Statistical	$\pm 1.28\%$	$\pm 0.35\%$	$\pm 0.32\%$	$\pm 0.33\%$	$\pm 0.41\%$	$\pm 0.88\%$	

For all measurements, systematic uncertainty considerably smaller than statistical.

Detector Asymmetries

$$a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}}$$

Detector Effects – Introduction

Final-state particles can have different detection efficiencies for particles and antiparticles. Two causes:

1) 'Physics' asymmetries due to different interaction cross-sections of particles in the detector (matter) material.

Negatively charged kaons interact with nucleons to produce hyperons

- ⇒ shorter path length
 ⇒ lower reconstruction efficiency
 - ⇒ positive kaon asymmetry

2) Residual asymmetries remaining after magnet polarity weighting, e.g. due to imperfect cancellation of (time-dependent) inactive detector elements.

For
$$B^0$$
 channels $(\mu^+ K^+ \pi^- \pi^-)$: $A_{BG} = a^\mu + a^K - 2a^\pi$
For B_s^0 channel $(\mu^+ \phi \pi^-)$: $A_{BG} = a^\mu - a^\pi$

$$a^X \equiv \frac{\varepsilon^{X^+} - \varepsilon^{X^-}}{\varepsilon^{X^+} + \varepsilon^{X^-}}$$

Kaon Reconstruction Asymmetry

Only affects B⁰ channels

Use dedicated channel $K^{*0} \rightarrow K^+\pi^-$

Also includes possible **asymmetry** in reconstruction of opposite-charge **pion**.

Study difference $N(K^+\pi^-) - N(K^-\pi^+)$ and fit invariant mass distribution to extract asymmetry in p(K) bins.

Convolute a^K distribution with p(K) for each channel and each VPDL bin to obtain final kaon correction.

$$A_{BG}(B^0) = a^{\mu} + (a^K) - (2a^{\pi})$$

Muon Reconstruction Asymmetry

Affects all three channels

Dedicated channel $J/\psi \rightarrow \mu^+\mu^-$

Insensitive to track asymmetry – only local muon reconstruction;

Study difference $N(\mu^+t^-) - N(\mu^-t^+)$ and fit invariant mass distribution to extract asymmetry in $p_T(\mu)$ bins;

10x smaller than kaon asymmetry.

$$A_{BG}(B^0) = a^{\mu} + a^{K} - 2a^{\pi}$$

$$A_{BG}(B_s^0) = a^{\mu} - a^{\tau}$$

Track Reconstruction Asymmetry

Affects all three channels

Use $K_S^0 \rightarrow \pi^+ \pi^-$ decays to test relative track asymmetries versus pT(track)

Charge-symmetric process: insensitive to absolute charge asymmetry;

Symmetry breaks down when dividing into separate pT samples.

Additional dedicated channel $(K^{*\pm} \rightarrow K_S^0 \pi^{\pm})$ finds no evidence for an absolute asymmetry.

Assign $a^{\pi} = (0.00 \pm 0.05)\%$

- 1) Overall track asymmetry will cancel in signal final states $(\mu^+\pi^-)$
- 2) Suggests negligible absolute asymmetry, since any effect should be pT dependent

Final A_{BG} Corrections

- Kaon asymmetry x10 larger than muon asymmetry
- Asymmetries consistent across VPDL bins
- Small differences between channels due to different kinematics

For B_s^0 channel:

 $A_{BG} = (0.11 \pm 0.06)\%$

For
$$B^0 \rightarrow \mu D^{\pm}$$
 channel, $A_{BG} = 1.17\% \rightarrow 1.23\% \pm 0.06\%$

	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6		
	-0.10 - 0.00 cm	0.00 - 0.02 cm	0.02 - 0.05 cm	0.05 - 0.10 cm	0.10 - 0.20 cm	0.20 - 0.60 cm		
μD channel								
A (%)	2.70 ± 1.28	1.02 ± 0.35	1.16 ± 0.32	1.50 ± 0.33	1.48 ± 0.41	1.20 ± 0.88		
	± 0.19	± 0.07	± 0.08	$\pm \ 0.07$	± 0.05	± 0.13		
a^K (%)	1.076 ± 0.051	1.061 ± 0.048	1.093 ± 0.047	1.101 ± 0.047	1.117 ± 0.047	1.114 ± 0.048		
	± 0.016	± 0.015	± 0.016	± 0.016	$\pm \ 0.017$	$\pm \ 0.017$		
a^{μ} (%)	0.102 ± 0.025	0.105 ± 0.027	0.107 ± 0.029	0.107 ± 0.029	0.108 ± 0.028	0.108 ± 0.028		
	± 0.008	$\pm \ 0.009$	± 0.012	± 0.013	± 0.011	$\pm \ 0.009$		
$a^K + a^\mu \ (\%)$	1.178 ± 0.057	1.166 ± 0.055	1.200 ± 0.055	1.208 ± 0.055	1.225 ± 0.055	1.222 ± 0.056		
	± 0.018	± 0.017	± 0.020	± 0.021	± 0.020	± 0.019		

For
$$B^0 \to \mu D^{*\pm}$$
 channel, $A_{BG} = 0.99\% \to 1.04\% \pm 0.07\%$

Oscillated $B_{(s)}^{0}$ Fraction

$$\begin{cases} a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}} \end{cases}$$

Dilution from non-mixed B mesons

Semi-inclusive event selection: missing neutrino prevents unique identification of $B_{(s)}0$ mesons;

Some $\mu D_{(s)}^{(*)}$ candidates arise from other sources:

- Prompt $c \to D$
- B⁺ decays
- B^0 in B_s^0 channel / B_s^0 in B^0 channel
- b baryons (negligible)

Need to model oscillations for both B^0 and B_s^0 , for all three channels

Use MC simulation.

For B_s^0 channel:

 $F_{B_c}^{osc} = 0.465 \pm 0.017$

Final Results & Combination

$$\left\{ \begin{array}{c} a_{\rm sl}^q = \frac{A - A_{\rm BG}}{F_{B_{(s)}^0}^{\rm osc}} \end{array} \right.$$

ad versus VPDL

Combine within each channel taking all correlations into account (via pseudo-experiment ensembles):

$$a_{\rm sl}^d(\mu D) = [0.53 \pm 0.63 \text{ (stat.)} \pm 0.16 \text{ (syst.)}]\%$$

 $a_{\rm sl}^d(\mu D^*) = [1.32 \pm 0.62 \text{ (stat.)} \pm 0.16 \text{ (syst.)}]\%$

Dependence on VPDL

F_B^{osc} is strong function of VPDL

 \Rightarrow Any real physical asymmetry from B⁰ mixing should be VPDL dependent;

Plot $(A - A_{BG})$ versus VPDL, to look for dependence:

 $\chi^2 = 2.6$ (4.7) for a_{sl}^d from this measurement; 3.0 (9.4) for SM a_{sl}^d .

Final Results

Combine two $\mathbf{a_{sl}^d}$ measurements, with correlations accounted for:

$$a_{\rm sl}^d = [0.93 \pm 0.45 \text{ (stat.)} \pm 0.14 \text{ (syst.)}]\%$$

- Consistent with SM at 2σ level
- More precise than existing WA from B-factories: $(-0.05 \pm 0.56)\%$
- Paper in preparation

Corresponding time-integrated measurement of \mathbf{a}^{s}_{sl} :

$$a_{\rm sl}^s = [-1.08 \pm 0.72 \,({\rm stat}) \pm 0.17 \,({\rm syst})] \,\%$$

- Supersedes previous worlds-best measurement (D0, 2009)
- Consistent with results of dimuon asymmetry...
- Submitted to Phys. Rev. Letters (arXiv:1207.1769 [hep-ex])

Combination

Combine D0 results from dimuon asymmetry (2011), a_{sl}^d and a_{sl}^s :

$$a_{\rm sl}^d({\rm comb.}) = (0.22 \pm 0.30)\%,$$

 $a_{\rm sl}^s({\rm comb.}) = (-1.81 \pm 0.56)\%,$

Correlation coefficient: -0.50

 $\chi^2/dof = 4.7/2$

p-value of SM: 0.29% (3.0σ)

B⁰ meson: consistent with SM (zero)

 B_s^0 meson: >3 σ evidence for anomalous CPV

Conclusions

• We present new precise measurements of the semileptonic mixing asymmetry in B^0 and B_s^0 mesons:

$$a_{\rm sl}^d = [0.93 \pm 0.45 \text{ (stat.)} \pm 0.14 \text{ (syst.)}]\%$$

 $a_{\rm sl}^s = [-1.08 \pm 0.72 \text{ (stat)} \pm 0.17 \text{ (syst.)}]\%$

- When combined with dimuon asymmetry result, 3σ evidence of anomalously large CPV in $B_s^{\ 0}$ mixing
- Data-driven methods, using strengths of D0 detector.
- Limited input from MC.
- Many cross-checks validate measurement;
- Paper submitted to PRL (a^s_{sl}), Extended PRD in preparation for a^d_{sl}.

Extra Slides

Additional combination
Cross-checks
Fit results (tables)

Combination (including B-fac adsl)

Combine D0 results from dimuon asymmetry (2011), a_{sl}^d and a_{sl}^s ;, and existing WA of a_{sl}^d from B-factories.

$$a_{\rm sl}^d({\rm comb.}) = (0.02 \pm 0.30)\%,$$

 $a_{\rm sl}^s({\rm comb.}) = (-1.63 \pm 0.56)\%,$

Correlation coefficient: -0.51

 $\chi^2/\text{dof} = 2.1/2$

p-value of SM: **0.26%**

 B_s^0 meson: >3 σ evidence for anomalous CPV

Magnet Polarity Weighting

Events are weighted such that sum of weights W is same for four (solenoid, toroid) = (\pm, \pm) polarity configurations.

$$W(\pm,\pm) = N_{\min}/N(\pm,\pm)$$

Default method: $N = N_{tot}$ (by event counting);

Alternative weights: $N = N_{sig}$ (from fits);

Weights determined separately in each VPDL bin, and for each channel.

Effective statistical loss of around 3-5%

 $N(\mu D^{\pm}): 740,000 \rightarrow 722,000 \quad (2.4\% loss)$

 $N(\mu D^{*\pm}): 545,000 \rightarrow 519,000 \quad (4.8\% \text{ loss})$

 $N(\mu D_s^{\pm}): 216,000 \rightarrow 203,000 \quad (6.0\% \text{ loss})$

Systematic Uncertainties on F_Bosc

- Vary B⁰ decay branching ratios within uncertainties;
- Vary B meson lifetimes within uncertainties;
- Vary ΔM_d within uncertainties;
- Vary B^0 and B^+ fraction to account for precision in production fractions.

	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	
	-0.10 - 0.00 cm	0.00 - 0.02 cm	0.02 - 0.05 cm	0.05 - 0.10 cm	0.10 - 0.20 cm	$0.20 - 0.60 \; \mathrm{cm}$	
	$F_{B^0}^{ m osc}(\mu D)$						
Branching Ratios	± 0.001	± 0.000	± 0.001	± 0.004	± 0.009	± 0.015	
Production Fractions	± 0.000	± 0.000	± 0.000	± 0.001	± 0.002	± 0.003	
B meson lifetimes	± 0.000	± 0.000	$\pm \ 0.000$	± 0.001	± 0.003	± 0.007	
ΔM_d	± 0.000	± 0.000	$\pm \ 0.001$	± 0.003	± 0.005	± 0.002	
Total	± 0.001	± 0.000	± 0.001	± 0.005	± 0.011	± 0.017	
$F_{B^0}^{ m osc}(\mu D^*)$							
Branching Ratios	± 0.001	± 0.000	± 0.001	± 0.001	± 0.004	± 0.006	
Production Fractions	± 0.000	± 0.000	± 0.001	± 0.001	± 0.001	± 0.002	
B meson lifetimes	± 0.000	± 0.000	± 0.001	± 0.001	± 0.003	± 0.005	
ΔM_d	± 0.000	± 0.000	± 0.001	± 0.003	± 0.005	± 0.003	
Total	± 0.001	± 0.000	± 0.002	± 0.003	± 0.007	± 0.009	