MEASUREMENT OF MASS AND LIFETIME OF Λ_b

Natalia Panikashvili on behalf of the ATLAS Collaboration University of Michigan

Outline

- Quick overview of Λ_b
- Recent lifetime measurement at the Tevatron experiments
- The ATLAS detector
 - 2010 2012 data taking
 - Reconstruction performance relevant for B physics
 - Triggers for B-physics
- Λ_b mass and lifetime measurements
 - How to measure lifetime?
 - Selection of Λ_b→J/ψΛ candidates
 - Background and Signal Modeling
 - Systematic uncertainties
 - Results
- Conclusions

Overview on the $\Lambda_{\rm b}$

- Lightest b baryon (udb)
- First observed by UA1 in 1991 in the decay channel $\Lambda_b \rightarrow J/\psi \Lambda$
- First lifetime measurement from LEP experiments (1992) using the semileptonic decays
- First lifetime measurement in the fully reconstructed channel at the Tevatron experiments
- Produced in high statistics at LHC
 - Lifetime and mass measurements at the ATLAS and LHCb experiments

Recent lifetime measurements at Tevatron

- There is a more then 2σ discrepancy between two recent CDF lifetime measurements: Λ_b → $J/\psi\Lambda$ and Λ_b → $\Lambda_c\pi$ decay channels
- There is a more then 2σ discrepancy between recent CDF and DØ results in the same channel: $\Lambda_b \rightarrow J/\psi \Lambda$

 $\tau(\Lambda_b) = 1.537 \pm 0.045(stat) \pm 0.014(syst)ps$

 $\tau(\Lambda_b) = 1.303 \pm 0.075(stat) \pm 0.035(syst)ps$

Phys. Rev. Lett. 106, 121804 (2011)

arXiv:1204.2340 [hep-ex]

The ATLAS detector

B physics measurements require excellent tracking capabilities and muon identification

- Inner Detector (|η| < 2.5)
 - Silicon pixels and strips (SCT) with Transition Radiation Tracker (TRT)
 - 2T Solenoidal field
 - $\sigma_p/p \sim 3 5 \%$
 - Impact parameter resolution ~ 10µm

Muon Spectrometer (|η|<2.7)

- 4 detector technologies: dedicated tracking and trigger chambers
- 0.5 2T Toroidal field
- $\sigma_p/p \sim 5\%$ (for $p_T = 10 100$ GeV)

Performance

Excellent mass resolution required for good S/B separation

- Transverse impact parameter of the reconstructed tracks with respect to the PV at two different pile-up conditions
- Muon reconstruction efficiency using J/ψ decays

- Luminosity delivered to ATLAS since the beginning
- In this analysis we used ~ 5fb⁻¹ collected during 2011

Status of the ATLAS detector

<i>ATLAS</i> 2011 p–p run												
Inner Tracking			Calorimeters				Muon Detectors				Magnets	
Pixel	SCT	TRT	LAr EM	LAr HAD	LAr FWD	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.8	99.6	99.2	97.5	99.2	99.5	99.2	99.4	98.8	99.4	99.1	99.8	99.3

Luminosity weighted relative detector uptime and good quality data delivery during 2011 stable beams in pp collisions at Vs=7 TeV between March 13th and October 30th (in %), after the summer 2011 reprocessing campaign

7/24/12

Trigger for B physics

EF mu20

a single muon trigger at level 1, confirmed at the high level trigger, passing a threshold of 20GeV

EF mu4mu6 X

two muon triggers at level 1, confirmed at the high level trigger, with one objects passing a threshold of 4 and the other 6 GeV

No displaced vertex requirements - advantage for lifetime measurement

Lifetime measurement

- Measurement method:
 - The proper decay time is calculated for each candidate as:

$$\tau = L_{xy} \frac{m(\Lambda_b)}{p_T(\Lambda_b)}$$

- L_{xy} is a Λ_b transverse decay distance measured from the primary vertex
- $m(\Lambda_b) = 5620.2 \text{ MeV}$

Measurement procedure:

- Select signal events
- Build p.d.f. for
 - Mass and proper decays time
 - Signal and Background
- Mass and lifetime simultaneously extracted with unbinned likelihood fit

 $B^0 \rightarrow J/\psi$ K_S is used as a control sample due to its similar topology. The lifetime of B⁰ is also measured in this analysis. It is used to compute the lifetime ratio $\tau(\Lambda_b)/\tau(B^0)$

Signal Selection

Selection of $\Lambda_b \rightarrow J/\psi(\mu\mu) \Lambda(\pi p)$

- Perform fit on 4 tracks simultaneously (χ²/N_{dof} < 3)
- Transverse decay length (L_{xy}) of Λ candidate from Λ_b vertex is required to be greater than 10mm
- p_⊤ of refitted V⁰ > 3.5 GeV
- 5.38 GeV < $m_{J/\psi\Lambda}$ < 5.9GeV

 $4074 \Lambda_b$ and 4081 anti Λ_b candidate (including background) were selected

Background and Signal fit models

- Signal:
 - Proper decay time
 - Exponential and
 - efficiency function →
 - Mass
 - Gaussian function
- Background:
 - Proper decay time
 - Prompt component
 - Non-prompt component
 - Mass
 - Polynomial function

Mass and lifetime simultaneously extracted with unbinned likelihood fit

7/24/12 12

Systematics of the measurement

Uncertainty	$\sigma_{\scriptscriptstyle T}$ (fs)	σ _m (MeV)
Selection/reconstruction	12	0.9
Background fit models	9	0.2
B _d contamination	7	0.2
Misalignment	1	-
Extra material	3	0.2
Tracking p _T scale	_	0.5
Total systematics	17	1.1

Selection:

V⁰ reconstruction

■ 82 ± 46 B_d candidates misidentified as Λ_b

Λ_b mass measurement

$$m(\Lambda_b) = 5619.7 \pm 0.7(stat) \pm 1.1(syst) MeV$$

 $N (\Lambda_b) = 2184 \pm 57$ The most precise measurement is from LHCb

Lifetime measurement results

$$\tau(\Lambda_b) = 1.499 \pm 0.036(stat) \pm 0.017(syst)ps$$

PDG(2012): $\tau(\Lambda_b) = 1.425 \pm 0.032 \, ps$

Cross - check

Same selection and fitting procedure is applied on $B_d \rightarrow J/\psi K_s$ candidates!

$$\tau(B_d) = 1.509 \pm 0.012(stat) \pm 0.018(syst)ps$$

$$m(B_d) = 5279 \pm 0.2(stat) \pm 1.0(syst)MeV$$

PDG(2012):
$$\tau(B_d) = 1.519 \pm 0.007 \,\text{ps}$$

 $m(B_d) = 5279.5 \pm 0.3 \,\text{MeV}$

Comparison with other measurements

 $\tau(\Lambda_b) = 1.499 \pm 0.036(stat) \pm 0.017(syst)ps$

ATLAS lifetime measurement is the most precise Λ_b lifetime measurement in the world!

Ratio

 $\frac{\tau(\Lambda_b)}{\tau(B^0)} = 0.960 \pm 0.025(stat) \pm 0.016(syst)$

Testing Heavy Quark
Expansion (HQE) theory
in B hadrons which
predicts hierarchy of B
hadron lifetimes due to
spectator effects on decay
of b quark

- Consistent with
 - the world average: 1.00 ± 0.06
 - NLO theoretical predictions 0.86 ± 0.5 and 0.88±0.5
 - recent DØ measurement: 0.864 ± 0.052(stat) ± 0.033 (syst)
 - recent CDF measurement: 1.020 ± 0.030(stat) ± 0.008 (syst)

Conclusions

- ATLAS has already delivered many important B-physics measurements, and more are on the way
- ATLAS Λ_b lifetime measurement is the most precise Λ_b lifetime measurement in the world and it is consistent with previous measurements
- The precision of the \(\Lambda \) mass measurement is now the second-best
- Preparations to measure the Λ_b polarization are underway