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Abstract

ATLAS measurements of heavy flavour production cross sections are presented, from proton-proton collisions at
the LHC at a centre-of-mass energy of 7 TeV. These make use of b-hadron decays to D∗µX, inclusive charm meson
production, inclusive electron and muon production from semileptonic heavy flavour decays, and reconstruction of
secondary decay vertices to tag b-jets. The results are compared with next-to-leading-order QCD calculations.
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1. Introduction and motivation

Heavy flavour production has been measured at
hadron colliders for many years, for example in proton-
antiproton collisions at centre-of-mass energies of
√

s = 0.63, 1.8 and 1.96 TeV at the Spp̄S [1] and Teva-
tron [2, 3] colliders. The predicted cross sections for
heavy flavour production have also been available for
many years [4], calculated using next-to-leading-order
perturbative quantum chromodynamics (NLO QCD).
Nevertheless, there are large theoretical uncertainties,
notably due to the dependence on the choice of the
renormalisation and factorisation scales. It is therefore
of interest to measure heavy flavour cross sections at the
much higher centre-of-mass energies of proton-proton
collisions at the Large Hadron Collider (LHC). This
provides an opportunity to test NLO QCD calculations
in a new energy range and helps to constrain the uncer-
tainties.

In addition to its intrinsic interest, heavy flavour pro-
duction in the Standard Model (SM) creates an impor-
tant background to many of the searches for new phe-
nomena that are being performed at the LHC. Measure-
ments of the heavy flavour cross sections lead to a bet-
ter understanding of this background and hence improve
the sensitivity of the searches.

ATLAS has measured heavy flavour production in pp
collisions at

√
s = 7 TeV. Four techniques are used: re-

construction of b-hadrons decaying to D∗µX, inclusive
charm meson production, inclusive lepton production,
as a tag of semileptonic heavy flavour decays, and re-
construction of secondary decay vertices to tag b-jets.
The results are compared with NLO QCD predictions.

2. The ATLAS detector

ATLAS [5] is a general-purpose detector covering al-
most the full solid angle. These measurements make
use of the charged-particle tracking and vertex recon-
struction within the pseudorapidity range |η| < 2.5 pro-
vided by the inner detector. This consists of a silicon
pixel detector, a silicon microstrip tracker and a tran-
sition radiation tracker, all inside a 2 T axial magnetic
field. Some analyses also make use of muon identifica-
tion with the muon spectrometer and electron identifica-
tion by the calorimeters and transition radiation tracker.

These heavy flavour analyses require a relatively
open trigger, which ATLAS was able to use during the
early stages of data-taking at

√
s = 7 TeV, when the

instantaneous luminosity was quite low and the rate of
multiple interactions per bunch crossing was not too
high. As the LHC luminosity increased the trigger crite-
ria had to be tightened or the trigger prescaled. Conse-
quently, the results presented are based only on the data
recorded by ATLAS in 2010, and in some cases only a
small subset of the 2010 data.
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3. Decays of b-hadrons to D∗µX final state

ATLAS has measured the inclusive cross section for
the production of hadrons containing a b quark (Hb)
by partial reconstruction of their semileptonic decays:
Hb → D∗+µ−X, with D∗+ → D0π+ and D0 → K−π+ [6].

An identified muon is required, which has to trig-
ger the event, together with three tracks of the ap-
propriate charges to allow full reconstruction of the
D∗ decay. A simultaneous fit is made to the decay
vertices of the b-hadron and the D0. The kinematic
acceptance is defined by selection cuts on the trans-
verse momentum and pseudorapidity of the D∗ and
the muon: pT(D∗) > 4.5 GeV and |η(D∗)| < 2.5, and
pT(µ) > 6 GeV and |η(µ)| < 2.4.

As an overview of the analysis method, the follow-
ing formula shows how the differential cross section is
extracted from the data:

dσ (pp→ HbX → D∗+µ−X′)
dpT (D∗µ)

=
fb N(D∗µ)

2ε BL∆pT
.

The number of reconstructed D∗µ pairs observed,
N(D∗µ), must be corrected by fb = (93.2 ± 0.3) %,
the fraction of D∗µ pairs that originate from signal
b-hadron decays, as determined from Monte Carlo sim-
ulation (MC), and by the efficiency, ε. This con-
sists of three components, the reconstruction efficiency
(48.3%) and the selection efficiency (79.1%), both of
which are found from MC, and the single-muon trig-
ger efficiency (81.9%), which is measured using an
independent control sample of J/ψ → µ+µ− de-
cays. Both charge-conjugate pairs, D∗+µ− and D∗−µ+,
are counted in N(D∗µ) and so a factor of two is re-
quired in the denominator to give the cross section
for a hadron containing a b (rather than a b̄) quark.
The other factors are the product branching fraction,
B = B

(
D∗+ → D0π+

)
B
(
D0 → K−π+

)
= 2.63%, the

integrated luminosity, L = 3.3 pb−1, and the bin
width, ∆pT.

Unfolding this to account for kinematics and the un-
reconstructed particles, X, yields the differential cross
section in terms of the b-hadron momentum. Fi-
nally, to extract the b-hadron production cross sec-
tion, the accepted kinematic region is redefined to be
pT(Hb) > 9 GeV and |η(Hb)| < 2.5. A bin-by-bin
acceptance correction is applied and the result is di-
vided by B (Hb → D∗+µ−X) = (2.75 ± 0.19) % to give
dσ (pp→ HbX)/dpT (Hb), which is shown in Fig. 1, to-
gether with the differential cross section as a function of
|η(Hb)|. The experimental systematic uncertainties have
large variations with pT and |η|. They are dominated
by the use of NLO QCD MC to calculate unfolding and

Figure 1: Differential cross sections for b-hadron production as func-
tions of pT(Hb) and |η(Hb)| [6] compared to theoretical predictions.
The inner error bars show the statistical uncertainties, the outer er-
ror bars the total experimental uncertainties and the shaded bands the
theoretical uncertainties.

acceptance corrections (1-30%) and also the reconstruc-
tion and selection efficiencies (10-15%).

The measurements are compared with NLO QCD
predictions calculated using POWHEG-HVQ 1.01 [7]
combined with either PYTHIA 6.4 [8] or HER-
WIG 6.5 [9], which are used to simulate the parton
shower, and with MC@NLO 4.0 [10] combined with
HERWIG 6.5. The predictions are lower than the data,
but consistent given the theoretical uncertainties, which
are dominated by the scale uncertainties.

Integrating the differential cross section gives the
b-hadron production cross section measured within the
kinematic range pT(Hb) > 9 GeV and |η(Hb)| < 2.5:
σ(pp→ HbX) = 32.7 ± 0.8 (stat.) ± 3.1 (syst.)

+2.1
−5.6(accept.) ± 2.3(B) ± 1.1(L) µb ,

where the last three uncertainties come from the accep-
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tance correction, the branching fractions and the lumi-
nosity, respectively.

The b-hadron production cross section predicted by
POWHEG+PYTHIA is:
σ(pp→ HbX) = 22.2 +8.9

−5.4 (scale) +2.1
−1.9 (mb)

+2.2
−2.1 (PDF) +1.6

−1.5 (hadr.) µb ,
where the theoretical uncertainties come from vari-
ation of the renormalisation and factorisation scales,
the b-quark mass, the proton parton distribution func-
tion, and the heavy quark hadronisation model. The
equivalent predictions from POWHEG+HERWIG and
MC@NLO are 18.6 µb and 19.2 µb, respectively, with
similar theoretical uncertainties. They are all lower than
the data, but consistent within the uncertainties.

To produce a total cross section that can be com-
pared directly with measurements made by other ex-
periments, the ATLAS result has been extrapolated to
the full phase space region using the NLO QCD MC
calculation, which requires multiplying by a factor of
11.0+2.6

−1.6:
σ(pp→ HbX)total = 360 ± 9(stat.) ± 34(syst.) ± 25(B)

±12(L)+77
−69(accept. ⊕ extrap.) µb ,

where the final uncertainty comes from the combined
acceptance and extrapolation corrections. This can
be compared with three other LHC measurements
of the inclusive bb̄ cross section in

√
s = 7 TeV pp

collisions, extrapolated to the full phase space region.
LHCb measures 284 ± 20 (stat.) ± 49 (syst.) µb [11]
from Hb → D0µX decays, extrapolated from
2 < η < 6, and 288 ± 4 (stat.) ± 48 (syst.) µb [12]
from Hb → J/ψ X decays, extrapolated from the
rapidity range 2.0 < y < 4.5. ALICE measures
244 ± 64 (stat.) +50

−59 (syst.) +7
−6 (extrap.) µb [13] from

Hb → J/ψ X decays, extrapolated from pT > 1.3 GeV
and |y| < 0.9. The ATLAS measurement is somewhat
higher than the others, but they are all consistent within
the quoted uncertainties.

CMS has also measured the cross sections at
√

s = 7 TeV for B+ [14], B0 [15], B0
s [16] and Λb [17]

production, while LHCb has measured the B+ produc-
tion cross section in the forward region [18].

4. Inclusive charm meson production

Inclusive production of charm mesons at the LHC is
sensitive to both c and b quark production and frag-
mentation, with about 10% expected to originate from
b-hadron decays. ATLAS has preliminary measure-
ments of the differential cross sections for charged D∗,
D and Ds production [19] within the kinematic range
pT > 3.5 GeV and |η| < 2.1. In this analysis, charm
mesons are reconstructed from fully hadronic decay

Figure 2: Differential cross sections for D∗± production as functions
of pT(D∗) and |η(D∗)| [19] compared to theoretical predictions. The
inner error bars show the statistical uncertainties and the outer er-
ror bars show the total experimental uncertainties. The shaded band
shows the theoretical uncertainty.

modes, so there is no lepton to trigger the events, and
therefore a minimum-bias trigger is used. This restricts
the analysis to 1.1 nb−1 from the early 2010 running, af-
ter accounting for prescale factors, but there are ample
statistics to measure the large cross sections.

Selection cuts for the charm mesons were tuned using
MC events and exploit the high pT decay products from
hard charm fragmentation, the displaced secondary ver-
tices from the long D(∗) meson lifetimes and the angular
distributions resulting from their spins. All fitted masses
and widths are consistent with expectations.

Differential cross sections for D∗± and D± produc-
tion as functions of pT and |η| are shown in Fig. 2 and
Fig. 3, respectively. The data are compared with three
sets of NLO QCD predictions, all of which lie below
the measured values, but they are consistent within the
large uncertainties.



C.M. Hawkes / Nuclear Physics B Proceedings Supplement 00 (2012) 1–6 4

Figure 3: Differential cross sections for D± production as functions of
pT(D) and |η(D)| [19] compared to theoretical predictions. Inner error
bars show statistical uncertainties, outer error bars the total experi-
mental uncertainties and the shaded band the theoretical uncertainty.

These ATLAS differential cross section measure-
ments have also been compared with two other sets
of NLO QCD calculations [20]. The predictions
of the Fixed-Order Next-to-Leading-Log (FONLL)
scheme [21] are higher than those of POWHEG
or MC@NLO, but still below the data, while pre-
dictions in the General-Mass Variable-Flavor-Number
Scheme [22] are slightly above, but consistent with, the
data.

The integrated cross sections measured by ATLAS
within pT > 3.5 GeV and |η| < 2.1 are:

σ(D∗±) = 285 ± 16 (stat.)+32
−27(syst.) ± 31(L) ± 4(B) µb ,

σ(D±) = 238 ± 13 (stat.)+35
−23(syst.) ± 26(L) ± 10(B) µb ,

σ(D±s ) = 168 ± 34 (stat.)+27
−25(syst.) ± 18(L) ± 10(B) µb .

The POWHEG+PYTHIA predictions are:

σ(D∗±) = 153+169
−80 (scale)+13

−15(mQ)+24
−21(PDF)+20

−16(hadr.) µb ,

σ(D±) = 132+137
−65 (scale)+11

−10(mQ)+20
−18(PDF)+21

−11(hadr.) µb ,

σ(D±s ) = 59+57
−28(scale)+4

−6(mQ)+9
−8(PDF)+7

−8(hadr.) µb ,

which are lower than, but consistent with, the data.
ALICE has also measured inclusive charm meson

production in pp collisions at central rapidity [23].

5. Inclusive lepton cross sections

ATLAS has measured the inclusive production of
electrons and muons from the semileptonic decays of
hadrons containing heavy quarks [24]. Leptons from
heavy flavour, W and Z decays can be separated from
other background sources, such as photon conversions,
decays in flight of pions and kaons and hadronic jets
faking electron signals, using various discriminating
variables. Decays of W and Z bosons populate the high
pT region, while leptons from heavy flavour decays are
concentrated at lower pT. Subtracting the SM contribu-
tion from W and Z decays yields the cross section from
heavy flavour decays.

Figure 4 shows the ATLAS inclusive muon differen-
tial cross section from heavy flavour production as a
function of pT(µ), compared to several NLO QCD pre-
dictions. The data agree with the POWHEG+PYTHIA
and FONLL calculations, while POWHEG+HERWIG
predicts a lower cross section. The data at high pT de-
viate significantly from the FONLL curve if only the
NLO term is included, but agree with the full FONLL
calculation, showing the sensitivity of the measurement
to the additional NLL resummation term.

CMS has also measured the inclusive production of
b-hadrons with muons [25] and of bb̄X decaying to
muons [26], and ALICE has measured heavy flavour de-
cay muons at forward rapidity [27].

6. Measurements using b-jet tagging

This technique exploits the long lifetime of b-hadrons
by looking for secondary decay vertices in hadronic jets
that are significantly displaced from the primary pp ver-
tex. The decay length significance is evaluated, by di-
viding the distance between primary and secondary ver-
tices by its uncertainty. This is required to be greater
than a certain value to define a b-tagged sample. The
number of true b-jets within this sample is found by
making a fit to the distribution of the invariant mass
of the charged particles forming the secondary vertex.
Templates for b-jets, charm jets and light-flavoured jets
are taken from MC and their relative contributions var-
ied in a fit to the data. These measurements are im-
portant for understanding the SM background to new
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Figure 4: Muon differential cross section from heavy flavour produc-
tion as a function of pT(µ) [24]. The lower plot shows the ratios of
cross sections to calculations in the FONLL scheme [21]. The shaded
region shows the theoretical uncertainty. Pythia is a lowest-order (LO)
generator and is therefore not expected to predict the correct inte-
grated cross section. It is normalised to the data to allow the shapes to
be compared.

particle searches, since b-jet tagging is often used as a
signature in these searches.

Figure 5 shows the ATLAS inclusive double-
differential cross section for b-jet production [28] as a
function of jet pT for four different ranges of rapidity.
Measurements are compared to three NLO QCD calcu-
lations, which describe the general features of the data,
but MC@NLO+HERWIG shows significant differences
in the detailed dependence on pT and |y|. CMS has also
measured inclusive b-jet production [29].

Figure 6 shows the ATLAS inclusive bb̄-dijet differ-
ential cross section [28] as a function of dijet invariant
mass. The NLO QCD predictions agree with the mea-
surements within the statistical uncertainties.

The same technique has been used to measure the
production of a b-jet, with pT > 25 GeV and |y| < 2.1,
in association with a Z or W boson, identified by its de-
cay into high pT leptons. ATLAS measures the cross
section for producing a b-jet with a Z boson to be

Figure 5: Inclusive b-jet double-differential cross section as a function
of jet pT for different rapidity ranges [28], compared to theoretical
calculations. The Pythia LO prediction is normalised to the data.

3.55 +0.82
−0.74(stat.) +0.73

−0.55(syst.) ± 0.12(L) pb [30], which is
consistent with three NLO QCD predictions based on
different models of heavy flavour production: 3.88 ±
0.58 pb from MCFM 5.8 [31], 2.23±0.01 (stat. only) pb
from ALPGEN 2.13 [32], and 3.29±0.04 (stat. only) pb
from SHERPA 1.1.3 [33]. There is better agreement
with MCFM and SHERPA, which draw a b-quark from
the proton parton density function, whereas ALPGEN
creates a bb̄ pair from the gluon distribution. CMS has
also measured Z/γ∗+b-jet production [34].

Figure 7 shows ATLAS cross section measurements
for production of a W boson, together with one or two
jets, at least one of which is identified as a b-jet, but
excluding top quark decays [35]. The NLO QCD calcu-
lations [8, 32, 36] are consistent with the data.

7. Summary

ATLAS has measured heavy flavour production cross
sections in pp collisions at

√
s = 7 TeV at the LHC,

using b-hadron decays to the D∗µX final state, inclu-
sive charm meson production, inclusive lepton produc-
tion from semileptonic heavy flavour decays, and recon-
struction of secondary decay vertices to tag b-jets. Re-
sults are consistent with NLO QCD predictions within
theoretical uncertainties, which are dominated by renor-
malisation and factorisation scale uncertainties.
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Figure 6: Cross section for bb̄-dijet production as a function of dijet
invariant mass, for b-jets with pT > 40 GeV and |y| < 2.1 [28], com-
pared to theoretical calculations. The Pythia LO prediction is nor-
malised to the data. Shaded regions show the statistical uncertainty
only.
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