Recent Results on Hadronic B decays from Belle

JungHyun Kim (KISTI)

On behalf of Belle Collaboration

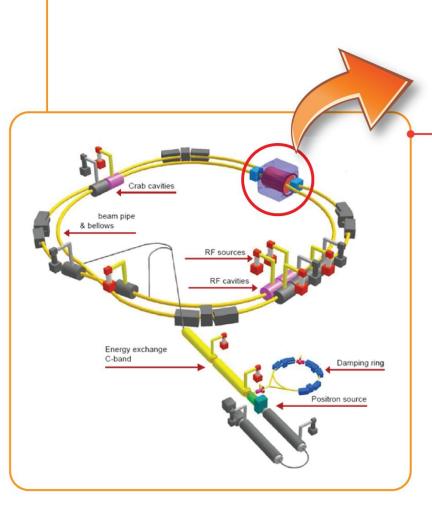
10th International Conference on Hyperons, Charm and Beauty Hadrons 2012,07,23~28

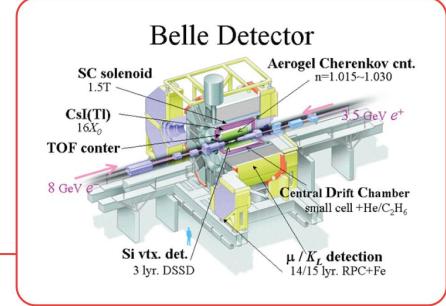
Overview

Introduction

Event Selection and Analysis

Current Results


- 1. $B \rightarrow \phi \pi$ arXiv:1206.4760v1 (Accepted in PRD) New upper limit
- 2. $B \to \mathrm{hh}$ $B \to K^+\pi^-, K^+\pi^0, K^0\pi^+, \pi^+\pi^-, K^+K^0, K^0K^0$; (new) branching fraction using final Belle dataset $B \to K^+K^-$; (new) upper limit


Summary

Hadronic B Decays

- ullet Charmless B decays provide an excellent probe in to the accuracy of the Standard Model.
- Measurement of branching fractions and \mathcal{A}_{CP} can be to measure CKM parameters.
- Measurements can confirm theoretical predictions, or indicate the presence of New Physics.

Experimental Apparatus

Circulation

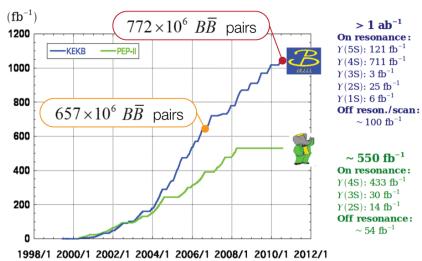
~3.0 Km

Beam

Asysmmeric 8.0 GeV (e⁻) 3.5 GeV (e⁺) CM 10.58 GeV

Luminosity

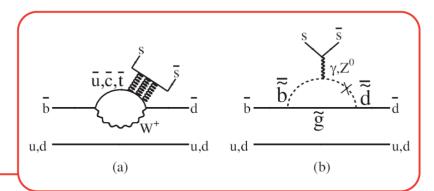
1ab⁻¹ with the Belle detecter


Goal

Measurement of CP violation

Data Sample

Collected at the $\Upsilon(4S)$ resonance with the Belle detecter at the KEKB asymmetric-energy e^+e^- collider


Integrated luminosity of B factories

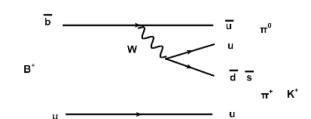
- $B \to \phi \pi$ are measured using $657 \times 10^6 \ B\overline{B}$ pairs
- $B \to hh$ All other analyses are performed on the full Belle $\Upsilon(4S)$ dataset of $772 \times 10^6 \ B\overline{B}$ pairs

$$B \to \phi \pi$$

 $B \to \phi \pi$ is forbidden at tree level and can only proceed through $b \to d$ penguin processes.

Penguin processes of $B \rightarrow \phi \pi$ in both SM and CMSSM

A precise measurement provides a means to study SM from suppressed diagrams in other modes including non-perturbative effects.


An enhanced branching fraction could indicate CMSSM, or the presence of a Z' boson.

The branching fractions of the theories and experiment

Model	${\cal B}(B o\phi\pi)$	Reference
SM	$\sim (3.2 \times 10^{-8}, 6.8 \times 10^{-9})$	Y. Li et al. Phys. Rev. D 80, 014024 (2009)
Four quark generation	$\sim 10^{-8}$	B. Mawlong et al. Phys. Lett. B 668, 116 (2008)
Z' model	$\sim 10^{-7}$	JF. Cheng et al., Phys. Lett. B 647, 413 (2007)
Supersysmetry	$\gtrsim 10^{-7}$	JF. Cheng et al., Phys. Lett. B 554 , 155 (2003)
experiment(BABAR(06))	$(2.8, 2.4) \times 10^{-7}$	BaBar Collaboration, Phys. Rev. D 74 , 011102(R) (2006)

$$B \rightarrow hh$$

- The branching fraction between theoretical calculations and exprimental measurements have large uncertainties.
- The A_{CP} measurements will help observe SM quantities.
- Improved experimental uncertainties can help our understanding of the standard model and help indentify New Physics.

$$\Delta \mathcal{A}_{K\pi} = \mathcal{A}_{CP}(K\pi^0) - \mathcal{A}_{CP}(K\pi)$$

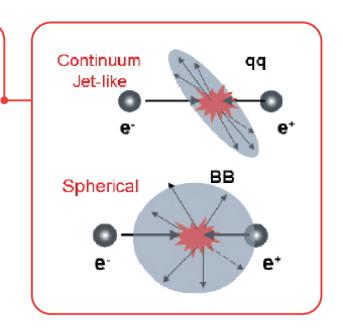
- As $B^+ \to K^+ \pi^0$ and $B^0 \to K^+ \pi^-$ have very similar leading order feynman diagrams, we would expect them to have similar \mathcal{A}_{CP} .
- A difference could indicate the enhancement of the color suppressed tree diagram.
- However, the previous Belle result found the sign and magnitude of these asymmetries to be different.
- The difference in these could indicate New Physics, such as a difference between direct CP in neutral and charged B decays.

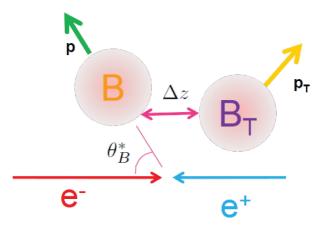
B meson candidates are indentified using two kinematic variables;

beam-energy-constrained mass
$$M_{\rm bc}=\sqrt{E_{\rm beam}^2-|\sum_i\vec{p_i}|^2}$$
 energy difference $\Delta E=\sum_i E_i-E_{\rm beam}$

where E_{beam} is the beam energy, and \vec{P}_i and E_i are the momenta and energies, respectively, of the daughters of the reconstructed B meson candidate in the center-of-mass (CM) frame.

Particle identification (PID) for charged kaons and pions is based on the likelihood ratios derived from ACC and TOF information and dE / dx measurements in the CDC.


These analysis all make use of a continuum suppression variable made up of a combination of event properties combined in to a likelihood ratio (LR).


Background contributions from $\Upsilon(4S) \to B\overline{B}$ events are investigated with a large MC sample that includes events from both charm and charmless B decays.

Continuum Suppression

Typical continuum suppression variables include;

 A Fisher discriminant formed out of 16 modified Super Fox-Wolfram moments calculated in the CM frame

• The distance between the vertices of the reconstructed B and the tag-side $B\left(\Delta z\right)$

$$L_s^{\Delta z} = \int_{-\infty}^{-\infty} exp(-|\Delta z - \Delta z'|/c\gamma\beta\tau) * exp[-\frac{1}{2} * (\frac{\Delta z - \Delta z'}{\sigma})^2] d\Delta z'$$

• The B flight direction with respect to the beam axis (θ_B^*)

$$L^{\cos\theta_{B^*}} = P_0 - P1\cos^2\theta_{B^*}$$

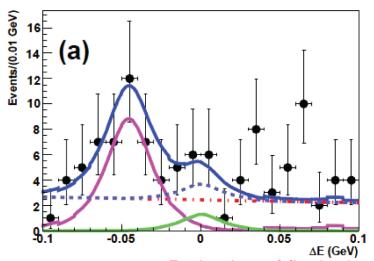
Signal yield, branching fraction and upper limit at the 90% CL

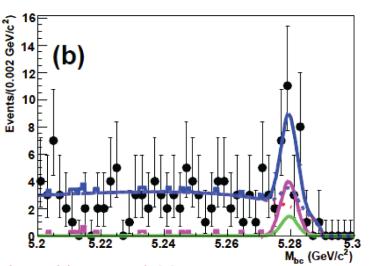
Result $B^+ \to \phi \pi^+$

Previous upper limit: (BaBar 2006)

$$\mathcal{B}_{UL}(B^+ \to \phi \pi^+) < 2.4 \times 10^{-7}$$

Signal + Continuum (dotted)


Continuum (dashed)


Non-resonant $B^+ \to K^+ K^- \pi^+$ (solid)

Other B background (solid)

Total (solid)

	$B^+ \to \phi \pi^+$
Yield	$4.5^{+5.1}_{-4.3}^{+5.1}_{-6.9}$
$\epsilon_{ m data}$	8.4%
$\mathcal{B}(10^{-7})$	$0.8^{+0.9}_{-0.8}{}^{+0.6}_{-1.3}$
$\mathcal{B}_{UL}(10^{-7})$	3.3
(657×10^6)	$B\overline{B}$ pairs)

Projection of fits in the fit region with ΔE and $M_{\rm bc}$

Signal yield, branching fraction and upper limit at the 90% CL

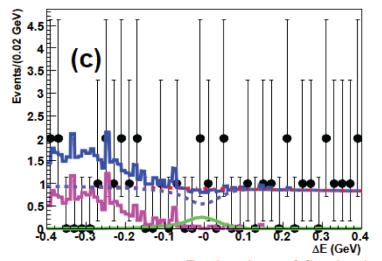
Result $B^0 \to \phi \pi^0$

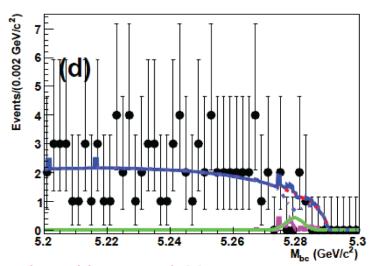
New upper limit!

Previous upper limit: (BaBar 2006)

$$\mathcal{B}_{UL}(B^0 \to \phi \pi^0) < 2.8 \times 10^{-7}$$

Signal + Continuum (dotted) Continuum (dashed)


Non-resonant $B^0 \to K^+K^-\pi^0$ (solid)


Other B background (solid)

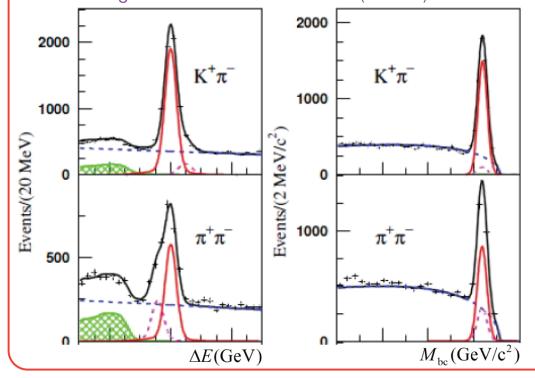
Total (solid)

	$B^0 \to \phi \pi^0$
Yield	$-2.2^{+2.1}_{-1.2}{}^{+1.3}_{-2.4}$
ϵ_{data}	4.9%
$\mathcal{B}(10^{-7})$	$-0.7^{+0.6}_{-0.4}^{+0.6}_{-0.8}$
$\mathcal{B}_{UL}(10^{-7})$	1.5
(657×10	⁶ pp̄ nairs)

 $(657 \times 10^{\circ} BB \text{ pairs})$

Projection of fits in the fit region with ΔE and $M_{\rm bc}$

(Belle preliminary)


$$B^{\scriptscriptstyle 0} \to K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$$
 and $B^{\scriptscriptstyle 0} \to \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$

Signal yield, measured branching fraction and \mathcal{A}_{CP} for both $B^0 o K^+\pi^-$ and $B^0 o \pi^+\pi^-$

Decay	Yield	$\mathcal{B}(10^{-6})$	\mathcal{A}_{CP}
$B^0 \to K^+\pi^-$	7525 ± 127	$20.00 \pm 0.34 \pm 0.63$	$-0.069 \pm 0.014 \pm 0.007$
$B^0 \to \pi^+\pi^-$	2111 ± 89	$5.04 \pm 0.21 \pm 0.19$	Update coming soon

 $(772 \times 10^6 B\overline{B} \text{ pairs})$

Background from charmless B decays (hatched) Background from mis-identification (dashed)

- Previous Belle Result $\mathcal{A}_{CP}(B \to K\pi)$: $-0.094 \pm 0.018 \pm 0.008$ Using 535 x 10⁶ $B\overline{B}$ pairs
 Nature **452**, 332 (2008)
- Current Results:

BaBar: -0.107 ± 0.016

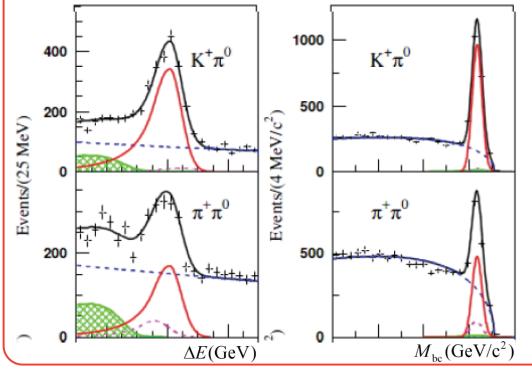
arXiv:0807.42226

CDF: $-0.086 \pm 0.023 \pm 0.009$

PRL **106**, 181802 (2011)

LHCb: -0.074 ± 0.033 ± 0.008

arXiv:1106.1197


$$B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}$$
 and $B^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}$

Signal yield, measured branching fraction and \mathcal{A}_{CP} for both $B^+ \to K^+ \pi^0$ and $B^+ \to \pi^+ \pi^0$

Decay	Yield	$\mathcal{B}(10^{-6})$	\mathcal{A}_{CP}
$B^+ \to K^+ \pi^0$	3731 ± 92	$12.62 \pm 0.31 \pm 0.56$	$+0.043 \pm 0.024 \pm 0.002$
$B^+ o \pi^+ \pi^0$	1846 ± 82	$5.86 \pm 0.26 \pm 0.38$	$-0.025 \pm 0.043 \pm 0.007$
		(772 106 pp pairs	<u>, </u>

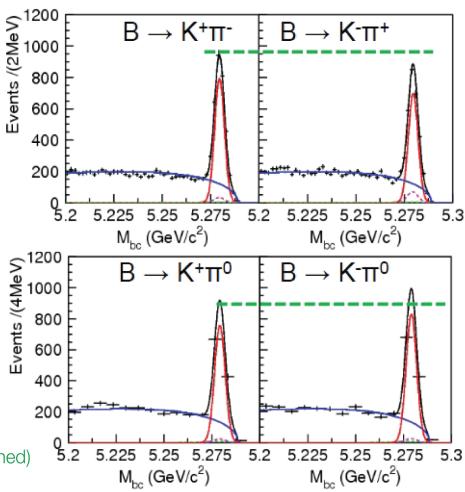
 $(772 \times 10^6 B\overline{B} \text{ pairs})$

Background from charmless B decays (hatched) Background from mis-identification (dashed)

Previous Belle Result

$$\mathcal{A}_{CP}(B^+ \to K^+ \pi^0)$$
:
0.07 ± 0.03 ± 0.01
Using 535 x 10⁶ $B\overline{B}$ pairs
Nature **452**, 332 (2008)

$${\cal A}_{\it CP}(B^+ o \pi^+ \pi^0)$$
 0.07 ± 0.06 ± 0.01 Using 535 x 10⁶ $B\overline{B}$ pairs Nature **452**, 332 (2008)


$$\Delta \mathcal{A}_{K\pi} = \mathcal{A}_{CP}(K\pi^0) - \mathcal{A}_{CP}(K\pi)$$

Previous Belle Result:

 $\Delta A_{K\pi} = +0.164 \pm 0.037 \ 4.4 \,\sigma$ (535 x 10° $B\bar{B}$ pairs)

New Result:

 $\Delta A_{K\pi} = +0.112 \pm 0.027 \ 4 \sigma$ (772×10⁶ $B\bar{B}$ pairs)

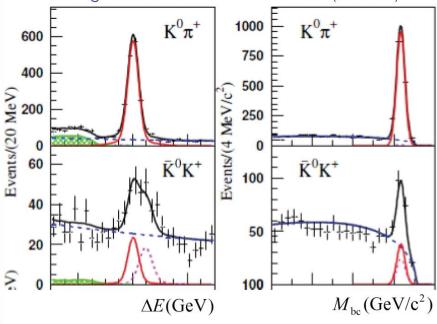
Background from charmless B decays (hatched) Background from mis-identification (dashed)

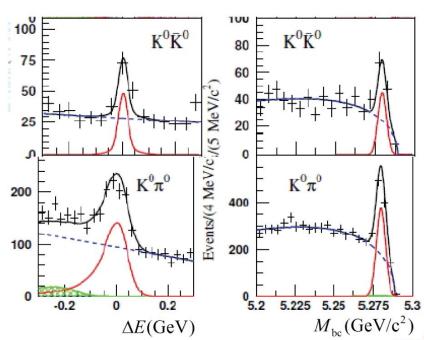
(Belle preliminary)

$$B \to K^0 \pi$$
 and $B \to K^0 K$

Signal yield, measured branching fraction and

$$\mathcal{A}_{CP}$$
 for $B^+ o K^0 \pi^+$, $B^+ o K^0 K^+$, $B^0 o K^0 K^0$ and $B o K^0 \pi^0$


	Decay	Yield	$\mathcal{B}(10^{-6})$	\mathcal{A}_{CP}
B^+	$\rightarrow K^0\pi^+$	3229 ± 71	$23.97 \pm 0.53 \pm 0.69$	$-0.014 \pm 0.021 \pm 0.006$
B^+	$\rightarrow K^0K^+$	134 ± 23	$1.11 \pm 0.19 \pm 0.05$	$+0.017 \pm 0.168 \pm 0.002$
B^0	$\rightarrow K^0K^0$	103 ± 15	$1.26 \pm 0.19 \pm 0.06$	-
B^0	$\to K^0\pi^0$	961 ± 45	$19.68 \pm 0.46 \pm 0.50$	-


 A_{CP} (PDG) 0.009 ± 0.029 (2012) 0.12 ± 0.18 (2012)

 $(772\times10^6~B\overline{B}~\text{pairs})$

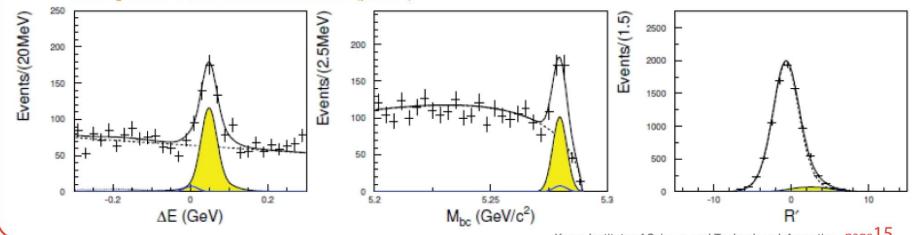
Background from charmless B decays (hatched)

Background from mis-identification (dashed)

Korea Institute of Science and Technology Information page 14

(Belle preliminary)

$$B^0 \to K^+K^-$$

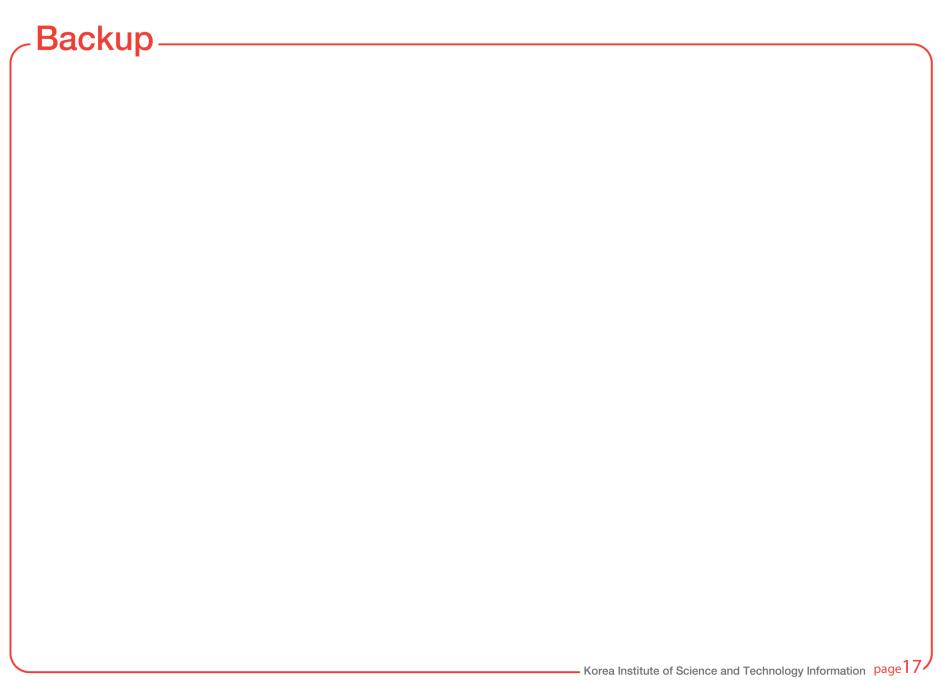

Signal yield and measured branching fraction for $B^0 \to K^+K^-$

Decay	Yield	$\mathcal{B}(10^{-6})$	\mathcal{A}_{CP}	
$B^+ \to K^0 \pi^+$	35 ± 29	$0.1 \pm 0.08 \pm 0.06 (< 0.2)$	_	$(772 \times 10^6 B\overline{B} \text{ pairs})$

Previous and other experiments results

Experiment	$\mathcal{B}(10^{-6})$
Belle (2007)	$0.09^{+0.18}_{-0.13} (< 0.41)$
BaBar (2007)	$0.04 \pm 0.15 \pm 0.08 \ (< 0.5)$
PDG (2010)	$0.15^{+0.11}_{-0.10} (< 0.41)$
LHCb (2012) (Preliminary)	$0.11^{+0.05}_{-0.04} \pm 0.06 \ (< 0.18)$

Background from mis-identification (yellow)


· Korea Institute of Science and Technology Information page 15

Summary

— New branching fractions and direct A_{CP} are available for $B \to hh$ the final Belle dataset with improved (new tracking, large data) analyses.

(To be submitted to PRL)

- A new, improved upper limit is available for $B \to \phi \pi$ from Belle. (To be published in PRD)
- CP asymmetries were not observed for K^0h^{\pm} as expected in the SM.
- The updated difference of \mathcal{A}_{CP} confirmes as evidence.
- The presented branching fractions in $B \rightarrow hh$ are consistent with the expected theoretical values.
- New upper limits in $B^0 \to K^+K^-$ and updated branching fractions are also consistent with previous results.

$$B \to \phi \pi$$
 Analysis

- ϕ candidates are created from a pair of charged kaons with an invariant mass within 1.008 GeV/ c^2 < $M_{K^+K^-}$ < 1.031 GeV/ c^2 (2.5 times of the ϕ full width).
- Candidate π^0 's are reconstructed from $~\gamma$ pairs that have invariant mass between $115.3~{
 m MeV}/c^2$ and $152.8~{
 m MeV}/c^2$ ($\pm 2.5\sigma$ standard deviations (σ)).

The K^+K^- pair is combined with either a π^+ or a π^0 candidate.

$$M_{
m bc}>5.20~{
m GeV}$$
, and $|\Delta E|<0.1~{
m GeV}$ for $B^+ o\phi\pi^+$ and $|\Delta E|<0.4~{
m GeV}$ for $B^0 o\phi\pi^0$

In this analysis, we use an additional Continuum Suppression variable, the angle between the final state K^+ direction and the B meson direction in the ϕ rest frame (θ_H).

$$B \rightarrow \phi \pi$$
 Analysis

Summary of the PDF's used in the measurement of $B \to \phi \pi$ decays

Mode	$B^+ \to \phi \pi^+$			$B^0 \to \phi \pi^0$		
	ΔE	$M_{ m bc}$	Method (Yield)	ΔE	$M_{ m bc}$	Method (Yield)
Signal	Sum of two Gaussians	Gaussian	$Float(4.5^{+5.1}_{-4.3})$	CB	Gaussian	$Float(-2.2^{+2.1}_{-1.2})$
$e^+e^- \to q\bar{q}$ process	1^{st} order poly.	ARGUS	Float($330.0^{+19.1}_{-18.4}$)	1^{st} order poly.	ARGUS	Float $(265.6^{+16.9}_{-16.2})$
$b \rightarrow c$	2D HistoPDF	1	Fixed(7.1)	2D Histo	PDF	Fixed(4.8)
$b \rightarrow u, d, s$	2D HistoPDF	1	Fixed(4.1)	2D Histo	PDF	Fixed(13.5)
$B^+ \to \phi K^+$	Sum of two Gaussians	${\it Gaussian}$	Fixed(33.8)	-	-	-
Nonresonant $B \to K^+K^-\pi$	Sum of two Gaussians	Gaussian	Fixed(4.7)	СВ	Gaussian	Fixed(1.6)

Signal yields for $B \to \phi \pi$ decays are obtained by performing a two-dimensional extended unbinned maximum likelihood (ML) fit to the observables $M_{\rm bc}$ and ΔE .

Systematic errors of the efficiency

Type		$B^0 o \phi \pi^0$	0	$B^{\pm} \rightarrow \phi \pi^{\pm}$	±
		+σ	$-\sigma$	$+\sigma$	$-\sigma$
MC acceptance	σ_M	0.8%	-0.8%	0.6%	-0.6%
PID	σ_M	1.3%	-1.3%	2.0%	-2.0%
Tracking	σ_M	2.0%	-2.0%	3.1%	-3.1%
π^0 detection efficiency	σ_M	3.0%	-3.0%	-	-
MDLR efficiency	σ_M	4.1%	-4.1%	2.4%	-2.4%
$N_{Bar{B}}$	σ_M	1.4%	-1.4%	1.4%	-1.4%
$\operatorname{Sum}:\sigma_M$		5.8%	-5.8%	4.7%	-4.7%

$$B \rightarrow hh$$
 Analysis

- Candidates of K^0 meson are reconstructed in $K_S^0 \to \pi^+ \pi^-$ by requireing the invariant mass of the pion-pair to be $480~{
 m MeV}/c^2 < M_{\pi\pi} < 516~{
 m MeV}/c^2~(\pm 5.0\,\sigma$ above).
- Pairs of photons with invariant masses lying in the range of $115~{
 m MeV}/c^2 < M_{\gamma\gamma} < 152~{
 m MeV}/c^2 (\pm 2.0\,\sigma$ above) are considered as π^0 candidates.
- $M_{\rm bc} > 5.20~{
 m GeV}/c^2$ and $|\Delta E| < 0.3~{
 m GeV}$
- Decays with a π^0 in the final state use a modified $M_{
 m bc}$ that explain the shower leakage in the calorimeter.

$$M_{\rm bc} \equiv \sqrt{E_{\rm beam}^{*2}/c^4 - |\vec{p}_B^*/c|^2} , \qquad \vec{p}_B^* = \vec{p}_h^* + \frac{\vec{p}_{\pi^0}^*}{|\vec{p}_{\pi^0}^*|} \sqrt{(E_{\rm beam}^* - E_h^*)^2 - m_{\pi^0}^{*2}}$$

$$B \rightarrow hh$$
 Analysis

Data was fitted in 3 dimensions $M_{
m bc}$, $\Delta E_{
m }$ and the continuum suppression variable.

In the case of modes similar to each other

 $(B^0 o K^+\pi^- ext{ and } B^0 o \pi^+\pi^-, \ B^+ o K^+\pi^0 ext{ and } B^+ o \pi^+\pi^0$, and $B^+ o K^0\pi^+ ext{ and } B^+ o K^0K^+)$ a simultaneous fit was performed on both modes at once.

Other modes were fitted separately.

A background to the $\phi \rightarrow K^+K^-$ decays

The two dimensional fit to $M_{\rm bc}$ and ΔE alone cannot distinguish the signal from other $B \to K^+ K^- \pi$ events

Belle

 $B \to K^+K^-\pi$ ($a_0(980) \to K^+K^-$, $f_0(980) \to K^+K^-$ and a nonresonant contribution) We obtain the expected yields for each mode, $B \to a_0(980)\pi$, $B \to f_0(980)\pi$ and nonresonant $B \to K^+K^-\pi$, from side-band data

We assigned the PDF as signal of $B \rightarrow \phi \pi$

We take a mode of the largest yield as a central value

BaBar

To discriminate against this background in the maximum likelihood fit, we use the helicity of the $(K^+K^-)_{\text{S-wave}}$ system

Further discrimination is provided by the K^+K^- invariant mass distribution, $M_{K^+K^-}$, which peaks at the ϕ mass for the signal, while it peaks at lower values for the S-wave background.

The \mathcal{A}_{CP} Sum rule

While $A_{K\pi}$ asymmetry can be explained by colour suppressed tree diagrams, the A_{CP} sum rule is a model independent, and should hold (Gronau et al. hep-ph/0608040)

The \mathcal{A}_{CP} sum rule is found to be non zero to 2σ

$$A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{B(K^0\pi^+)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} = A_{CP}(K^+\pi^0) \frac{2B(K^+\pi^0)}{B(K^+\pi^-)} \frac{\tau_0}{\tau_+} + A_{CP}(K^0\pi^0) \frac{2B(K^0\pi^0)}{B(K^+\pi^-)}$$

$$A_{CP}(K^+\pi^-) + A_{CP}(K^0\pi^+) \frac{\Gamma(K^0\pi^+)}{\Gamma(K^+\pi^-)} = A_{CP}(K^+\pi^0) \frac{2\Gamma(K^+\pi^0)}{\Gamma(K^+\pi^-)} + A_{CP}(K^0\pi^0) \frac{2\Gamma(K^0\pi^0)}{\Gamma(K^+\pi^-)}$$

$$Lside - Rside = -0.270 \pm 0.145$$