Excited charmonium spectroscopy from lattice QCD

Christopher Thomas, Trinity College Dublin

thomasc@maths.tcd.ie

Outline

- Introduction
- Spectroscopy in lattice QCD
- Excited charmonium spectrum
- Scattering and resonances
- Summary and outlook

Meson Spectroscopy

Meson Spectroscopy

CLAS12

Meson Spectroscopy

CLAS12

Quark-antiquark pair: $\quad n^{2 S+1} L_{J}$

Meson Spectroscopy

BESIII

KLOE2

CLAS12

Quark-antiquark pair: $\quad n^{2 S+1} L_{J}$

$$
\begin{array}{ll}
\text { Parity: } & P=(-1)^{(L+1)} \\
\text { Charge Conj Sym: } & C=(-1)^{(L+S)}
\end{array}
$$

$$
\mathrm{JPC}=0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \ldots
$$

Meson Spectroscopy

BESIII
 KLOE2

CLAS12

Quark-antiquark pair: $\quad n^{2 S+1} L_{J}$

$$
\begin{array}{ll}
\text { Parity: } & P=(-1)^{(L+1)} \\
\text { Charge Conj Sym: } & C=(-1)^{(L+S)}
\end{array}
$$

$$
\mathrm{JPC}_{\mathrm{PC}}=0^{-+}, 0^{++}, 1^{--}, 1^{++}, 1^{+-}, 2^{--}, 2^{++}, 2^{-+}, \ldots
$$

Exotics $\left(J^{P C}=1^{-+}, 2^{+-}, \ldots\right) ? \quad$ can't just be a $q \bar{q}$ pair
Probe low energy d.o.f. of QCD

Meson Spectroscopy

BESIII KLOE2

CLAS12

"िande

 ...
(q) (q)

(q) (q)
(q) (q)
(q) $\bar{q})$

Exotics $\left(\mathrm{J}^{\mathrm{PC}}=1^{-+}, 2^{+-}, \ldots\right)$? \quad can't just be a $q \bar{q}$ pair
Probe low energy d.o.f. of QCD
e.g. hybrids, multi-mesons

Charmonium Spectroscopy

Patrignani, Hadron 2011

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n>
$$

$$
C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
\begin{aligned}
& Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n> \mathcal{O}(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \overleftrightarrow{D}_{j} \overleftrightarrow{D}_{k} \ldots \psi(x) \\
& C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0> \text { definite JPC } \\
& \text { Here up to } 3 \text { derivs and } \mathrm{p}=0 \\
& \text { 'Distillation' PR D80, 054506 } \\
& \hline
\end{aligned}
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
\begin{aligned}
& \begin{array}{l}
Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n> \\
\mathcal{O}(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \stackrel{\rightharpoonup}{D}_{j} \stackrel{\rightharpoonup}{D}_{k} \ldots \psi(x) \\
C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>\quad \text { definite JPC } \quad \text { Here up to } 3 \text { derivs and } \mathrm{p}=0 \\
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|\mathcal{O}_{i}(0)\right| n><n\left|\mathcal{O}_{j}^{\dagger}(0)\right| 0>
\end{array} \\
& \begin{array}{l}
\text { 'Ditlation' PR D80, 054506 }
\end{array} \\
& \hline
\end{aligned}
$$

Spectroscopy on the lattice

Calculate energies and matrix elements ("overlaps", Z's) from correlation functions of meson interpolating fields

$$
\begin{aligned}
& \begin{array}{l}
Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n> \\
\mathcal{O}(t)=\sum_{\vec{x}} e^{i \vec{p} \cdot \vec{x}} \bar{\psi}(x) \Gamma_{i} \stackrel{\rightharpoonup}{D}_{j} \stackrel{\leftrightarrow}{D}_{k} \ldots \psi(x) \\
C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0>\quad \text { definite JPC } \quad \text { Here up to } 3 \text { derivs and } \mathrm{p}=0 \\
C_{i j}(t)=\sum_{n} \frac{e^{-E_{n} t}}{2 E_{n}}<0\left|\mathcal{O}_{i}(0)\right| n><n\left|\mathcal{O}_{j}^{\dagger}(0)\right| 0> \\
C_{i j}(t) \xrightarrow[t \rightarrow \infty]{\longrightarrow} \frac{Z_{i}^{(0)} Z_{j}^{(0) *}}{2 E_{0}} e^{-E_{0} t}
\end{array} \\
&
\end{aligned}
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators
Generalised eigenvector problem:

$$
\left.C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0\right\rangle
$$

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators
Generalised eigenvector problem:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators
Generalised eigenvector problem:

$$
\left.C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0\right\rangle
$$

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n>
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators
Generalised eigenvector problem:

$$
C_{i j}(t)=\langle 0| \mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)|0\rangle
$$

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n>
$$

Also \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} \mathcal{O}_{i}
$$

Variational Method

Large basis of operators \rightarrow matrix of correlators
Generalised eigenvector problem:

$$
\left.C_{i j}(t)=<0\left|\mathcal{O}_{i}(t) \mathcal{O}_{j}^{\dagger}(0)\right| 0\right\rangle
$$

$$
C_{i j}(t) v_{j}^{(n)}=\lambda^{(n)}(t) C_{i j}\left(t_{0}\right) v_{j}^{(n)}
$$

Eigenvalues \rightarrow energies

$$
\lambda^{(n)}(t) \rightarrow e^{-E_{n}\left(t-t_{0}\right)} \quad\left(t \gg t_{0}\right)
$$

$Z^{(n)}$ related to eigenvectors

$$
Z_{i}^{(n)} \equiv<0\left|\mathcal{O}_{i}\right| n>
$$

Also \rightarrow optimal linear combination of operators to overlap on to a state

$$
\Omega^{(n)} \sim \sum_{i} v_{i}^{(n)} \mathcal{O}_{i}
$$

Var. method uses orthog of eigenvectors; don't just rely on separating energies

Charmonium

Use variational method with large basis of operators

Charmonium

Use variational method with large basis of operators
Dynamical (unquenched) calculation $\left[\mathrm{N}_{\mathrm{f}}=2+1\right]$
Anisotropic - finer in temporal $\operatorname{dir}\left(a_{s} / a_{t} \approx 3.5\right), a_{s} \approx 0.12 \mathrm{fm}$
Two volumes: $16^{3}, 24^{3}\left(L_{s} \approx 1.9,2.9 \mathrm{fm}\right)$

Charmonium

Use variational method with large basis of operators
Dynamical (unquenched) calculation $\left[\mathrm{N}_{\mathrm{f}}=2+1\right]$
Anisotropic - finer in temporal $\operatorname{dir}\left(a_{s} / a_{t} \approx 3.5\right), a_{s} \approx 0.12 \mathrm{fm}$
Two volumes: $16^{3}, 24^{3}\left(L_{s} \approx 1.9,2.9 \mathrm{fm}\right)$

$$
\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}
$$

Charmonium

Use variational method with large basis of operators

Dynamical (unquenched) calculation $\left[\mathrm{N}_{\mathrm{f}}=2+1\right]$
Anisotropic - finer in temporal $\operatorname{dir}\left(a_{s} / a_{t} \approx 3.5\right), a_{s} \approx 0.12 \mathrm{fm}$
Two volumes: $16^{3}, 24^{3}\left(L_{s} \approx 1.9,2.9 \mathrm{fm}\right)$
$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}$

Only include connected contributions

Charmonium

Use variational method with large basis of operators

Dynamical (unquenched) calculation $\left[\mathrm{N}_{\mathrm{f}}=2+1\right]$
Anisotropic - finer in temporal $\operatorname{dir}\left(a_{s} / a_{t} \approx 3.5\right), a_{s} \approx 0.12 \mathrm{fm}$
Two volumes: $16^{3}, 24^{3}\left(L_{s} \approx 1.9,2.9 \mathrm{fm}\right)$
$\mathrm{M}_{\pi} \approx 400 \mathrm{MeV}$

Only include connected contributions

Hadron Spectrum Collaboration - lattice details: PR D78 054501, PR D79 034502

JHEP 07 (2012) 126 - Liuming Liu, Graham Moir, Mike Peardon, Sinéad Ryan, CT, Pol Vilaseca; Jo Dudek, Robert Edwards, Bálint Joó, David Richards

Charmonium - volume comparison

Scattering in a box

Scattering in a box

$$
\begin{aligned}
& \text { Infinite Volume } \\
& \text { Continuous spectrum } \\
& E_{\pi \pi}(p)=2 \sqrt{m_{\pi}^{2}+\bar{p}^{2}}
\end{aligned}
$$

Scattering in a box

Infinite Volume

Continuous spectrum

$$
E_{\pi \pi}(p)=2 \sqrt{m_{\pi}^{2}+\vec{p}^{2}}
$$

Finite Volume

Cubic box with periodic boundary conditions

Quantised momenta

$$
\vec{p}=\frac{2 \pi}{L_{s}}\left(n_{x}, n_{y}, n_{z}\right)
$$

\rightarrow Discrete spectrum

Scattering in a box

Euclidean time: can't directly study dynamical properties like widths

Scattering in a box

Euclidean time: can't directly study dynamical properties like widths
Lüscher: (elastic) energy shifts in finite volume \rightarrow phase shift

$$
f_{l}(E)=\frac{1}{2 i p}\left(e^{2 i \delta_{l}(E)}-1\right)=\frac{1}{p} e^{i \delta_{l}(E)} \sin \delta_{l}(E)
$$

Scattering in a box

Euclidean time: can't directly study dynamical properties like widths
Lüscher: (elastic) energy shifts in finite volume \rightarrow phase shift

$$
f_{l}(E)=\frac{1}{2 i p}\left(e^{2 i \delta_{l}(E)}-1\right)=\frac{1}{p} e^{i \delta_{l}(E)} \sin \delta_{l}(E)
$$

$$
\triangle E\left(L_{s}\right) \rightarrow \delta\left(E, L_{s}\right)
$$

Scattering in a box

Euclidean time: can't directly study dynamical properties like widths
Lüscher: (elastic) energy shifts in finite volume \rightarrow phase shift

$$
f_{l}(E)=\frac{1}{2 i p}\left(e^{2 i \delta_{l}(E)}-1\right)=\frac{1}{p} e^{i \delta_{l}(E)} \sin \delta_{l}(E)
$$

$$
\triangle E\left(L_{s}\right) \rightarrow \delta\left(E, L_{s}\right)
$$

Extract phase shift at discrete $p_{\text {cm }}$

Map out phase shift \rightarrow resonance parameters (mass, width), decays

Scattering in a box

Euclidean time: can't directly study dynamical properties like widths

Lüscher: (elastic) energy shifts in finite volume \rightarrow phase shift

$$
f_{l}(E)=\frac{1}{2 i p}\left(e^{2 i \delta_{l}(E)}-1\right)=\frac{1}{p} e^{i \delta_{l}(E)} \sin \delta_{l}(E)
$$

$$
\triangle E\left(L_{S}\right) \rightarrow \delta\left(E, L_{S}\right)
$$

Extract phase shift at discrete p_{cm}

Map out phase shift \rightarrow resonance parameters (mass, width), decays
$\rho, X(3872), Z^{+}(4430), \ldots$

Isospin-2 $\pi \pi$ scattering

Testing new methodology with $\pi \pi$ in isospin-2

Isospin-2 $\pi \pi$ scattering

Testing new methodology with $\pi \pi$ in isospin-2

+ similar diagrams

Isospin-2 $\pi \pi$ scattering

Testing new methodology with $\pi \pi$ in isospin-2

+ similar diagrams

$$
\begin{aligned}
& \mathcal{O}(\vec{P})=\sum_{\vec{p}_{1}, \vec{p}_{2}} C_{\Lambda}\left(\vec{P}, \vec{p}_{1}, \vec{p}_{2}\right) \mathcal{O}_{\pi}\left(\vec{p}_{1}\right) \mathcal{O}_{\pi}\left(\vec{p}_{2}\right) \\
& \vec{P}=\vec{p}_{1}+\vec{p}_{2} \quad \vec{P}=[0,0,0],[0,0,1],[0,1,1],[1,1,1]
\end{aligned}
$$

$\pi \pi \mathrm{I}=2$ scattering: $\mathrm{L}=0$

$\pi \pi \mathrm{I}=2$ scattering: $\mathrm{L}=2$

$\pi \pi \mathrm{l}=2$ scattering: $\mathrm{L}=2$

$\pi \pi \mathrm{l}=2$ scattering: $\mathrm{L}=4$

Summary and Outlook

Summary

- Extensive charmonium spectrum, exotics
- Hybrid supermultiplets - probe low energy d.o.f.
- $\pi \pi \mathrm{I}=2$ phase shift mapped out (S and P-wave)
- Also: light isoscalar and isovector mesons, baryons

Summary and Outlook

Summary

- Extensive charmonium spectrum, exotics
- Hybrid supermultiplets - probe low energy d.o.f.
- $\pi \pi \mathrm{I}=2$ phase shift mapped out (S and P-wave)
- Also: light isoscalar and isovector mesons, baryons

Outlook

- Scattering - resonances, decays, ...
- Disconnected contributions, glueball mixing, etc
- D / D_{s} mesons, charmed baryons, rad. transitions
- Lighter pion masses, larger volumes, ...

Extra Slides

Charmonium - principal correlators

$$
\lambda(t) \cdot e^{m\left(t-t_{0}\right)}
$$

Charmonium - hybrid candidates

Charmonium - supermultiplets

Charmonium - O(a)

Dispersion relation - η_{c}

Dispersion relation - D

Charmonium systematics - t_{0}

Charmonium systematics $-\mathrm{t}_{0}$

Charmonium systematics - t_{0}

Charmonium systematics - $N_{\text {vecs }}$

Charmonium operators

Λ	Λ^{-+}	Λ^{--}	Λ^{++}	Λ^{+-}
A_{1}	12	6	13	5
A_{2}	4	6	5	5
T_{1}	18	26	22	22
T_{2}	18	18	22	14
E	14	12	17	9

	a_{0}	π	π_{2}	b_{0}	ρ	ρ_{2}	a_{1}	b_{1}
Γ	1	γ_{5}	$\gamma_{0} \gamma_{5}$	γ_{0}	γ_{i}	$\gamma_{0} \gamma_{i}$	$\gamma_{5} \gamma_{i}$	$\gamma_{0} \gamma_{5} \gamma_{i}$

