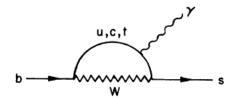
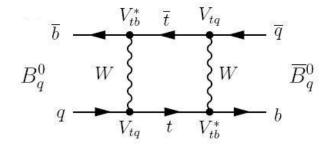
Heavy Flavor Rare Decays from ATLAS (Search for $B_s \rightarrow \mu^+ \mu^-$)



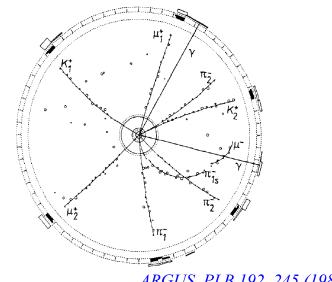
Outline


- Motivation
 - FCNCs in B Decays
 - Theoretical predictions and previous results for $B_s \rightarrow \mu\mu$
- The ATLAS experiment
 - Detector components and performance
- Search for $B_s \rightarrow \mu\mu$
 - Analysis strategy
 - B reconstruction and event pre-selection
 - Backgrounds
 - Acceptances and Efficiencies
 - Reference mode yield determination
 - Branching ratio limit calculation
 - Result
 - Combined limit from ATLAS, CMS and LHCb
- Conclusions

Flavor Changing Neutral Currents (FCNCs)

FCNCs are highly suppressed in the SM

- forbidden at tree level and FCNC loop diagrams are kinematically suppressed
- First FCNC in heavy quarks discovered in $B\overline{B}$ mixing by ARGUS in 1987


First FCNC in exclusive radiative b \rightarrow s y decays observed by CLEO in 1993

$$\mathcal{B}(B^+ \to K^{*+}\gamma) = (4.21 \pm 0.18) \times 10^{-5}$$

$$\mathcal{B}(B^0 \to K^{*0}\gamma) = (4.33 \pm 0.15) \times 10^{-5}$$

PDG World Averages

ARGUS, PLB 192, 245 (1987)

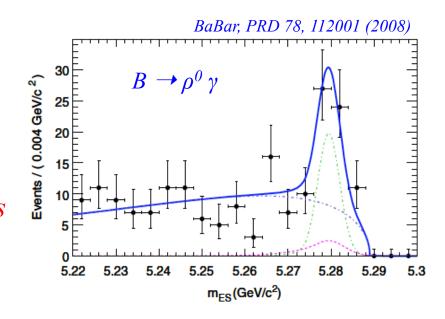
Flavor Changing Neutral Currents (FCNCs)

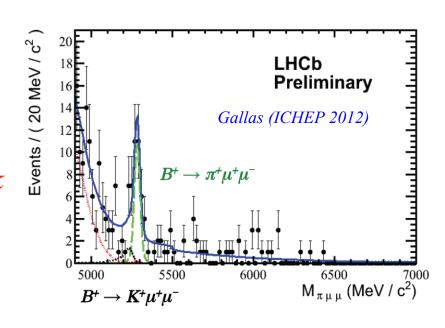
• CKM-suppressed radiative $b \rightarrow d \gamma$ transitions discovered by BaBar and Belle

$$\mathcal{B}(B \rightarrow \rho \gamma) = (1.39 \pm 0.25) \times 10^{-6}$$

PDG World Average

• Semi-leptonic box diagrams rarest B decays so far measured


$$\mathcal{B}(B \to K^* l^+ l^-) = (1.08 \pm 0.11) \times 10^{-6}$$


PDG World Average

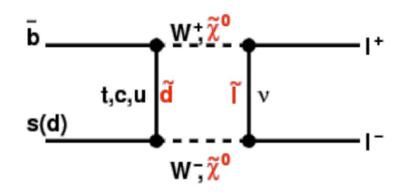
$$\mathcal{B}(B^+ \to \pi^+ l^+ l^-) = (2.4 \pm 0.6 \pm 0.2) \times 10^{-8}$$

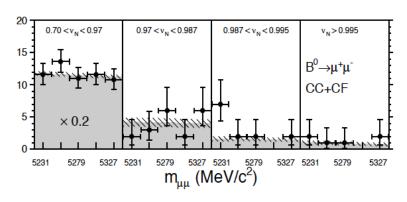
LHCb preliminary @ ICHEP 2012

- All observed FCNC in neutral B decays have a "non-participating" spectator quark
- No observation of annihilation or exchange loop diagram in decay, yet

Motivation to search for $B_s \rightarrow \mu^+ \mu^-$

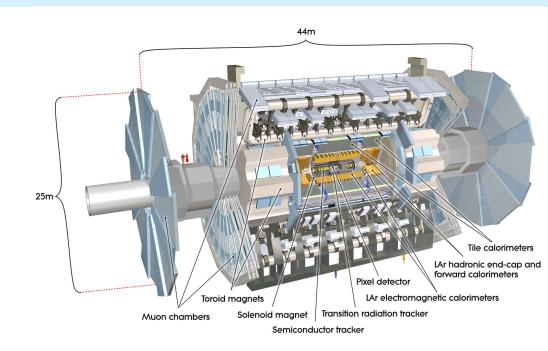

Standard model prediction

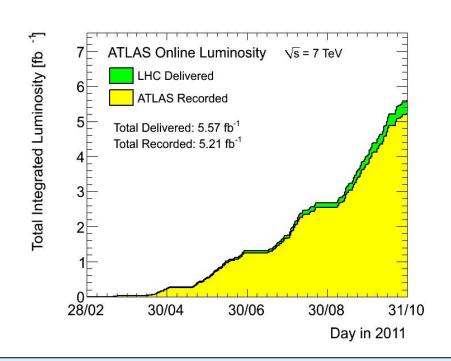

$$\mathcal{B}(B_s \to \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$$


Buras et al., PLB 694, 402 (2011)

- New Physics models
 - Virtual SM particles in loops could be replaced by heavy NP particles and thus significantly enhance the branching ratio
- Search for New Physics
 - Due to its small and precisely calculated branching ratio $B_s \rightarrow \mu^+ \mu^-$ is a very sensitive mode for NP at very high masses
 - Search is complementary to direct searches at the energy frontier
- Best published limit on $BR(B_s \rightarrow \mu^+\mu^-)$ from non-LHC experiments by CDF

$$\mathcal{B}(B_s \to \mu^+ \mu^-) < 4.0 \times 10^{-8} \ \text{@ 95\% CL}$$




CDF, PRL 107, 191801 (2011)

The ATLAS Detector

Tracking

- Pixel, (microstrip) Semiconductor
 Tracker (SCT) and Transition
 Radiation Tracker (TRT) in 2T
 solenoidal B field
- Muon System (MS)
 - Dedicated trigger and tracking chambers
 - 0.5 2 T toroidal field
- Tracking performance
 - 10 μm impact parameter resolution
 - $-\sigma(p_T)/p_T \sim 0.05\% p_T \oplus 1.5\%$
- Data sample
 - $5.2 \, fb^{-1}$ recorded in 2011 (2.4 fb^{-1} used in this analysis)
 - Instantaneous luminosity steadily increasing during 2011

Analysis Strategy

- Relative BR measurement
 - Partial cancelation of uncertainties (luminosity, cross-section, efficiencies, ...)
 - Use reference decay $B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+\mu^- K^+$

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(B^{\pm} \to J/\psi K^{\pm} \to \mu^{+}\mu^{-}K^{\pm}) \times \frac{f_{u}}{f_{s}} \times \frac{N_{\mu^{+}\mu^{-}}}{N_{J/\psi K^{\pm}}} \times \frac{\mathcal{E}_{J/\psi K^{\pm}}}{A_{\mu^{+}\mu^{-}}} \times \frac{\mathcal{E}_{J/\psi K^{\pm}}}{\mathcal{E}_{\mu^{+}\mu^{-}}} \times \frac{\mathcal{E}_{J/\psi K^{\pm}}}{\mathcal{E}_{\mu^{+}\mu^$$

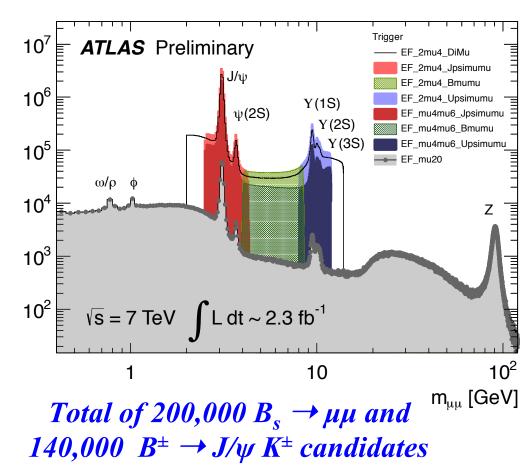
BR of reference channel and relative production rate

• Taken from PDG and recent LHCb measurement

Signal yields

- Count $B_s \rightarrow \mu^+\mu^-$ events in signal region and "subtract" background estimated from mass sidebands
- Fit for $B^{\pm} \rightarrow \mu^{+}\mu^{-} K^{\pm}$ signal yield

Acceptances and efficiencies

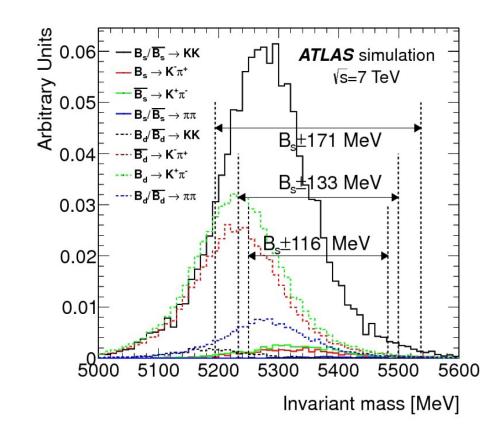

- Determined with simulated events weighted to match data distributions
- Similar selection criteria for $B_s \rightarrow \mu^+\mu^-$ and reference channel

Single event sensitivity SES

• Corresponds to branching ratio that would yield one observed event in the data sample

B Reconstruction and Event Pre-Selection

- Trigger
 - Level 1 di-muon trigger, require $p_T > 4$ GeV for both muons
- Inner detector tracks
 - at least 1 pixel, 6 SCT and 8 TRT hits
 - $|\eta| < 2.5$ and $p_T > 4$ GeV (> 2.5 GeV) for muon (kaon) candidates
 - require muons to be matched to MS tracks
- B decay vertex
 - form B vertex from B daughter tracks
 - require vertex χ^2/DOF
 - $< 2 \text{ for } B_s \rightarrow \mu\mu \text{ (85\% efficient);}$ $< 6 \text{ for } B \rightarrow J/\psi \text{ K (99.5\% efficient)}$
- B candidates
 - $-p_T(B) > 8 \text{ GeV}, |\eta_B| < 2.5$
- Primary vertex (PV)
 - determined from non-B candidate
 tracks and constrained to pp beam spot
 - if multiple PVs in an event, choose one closest in z to B decay vertex

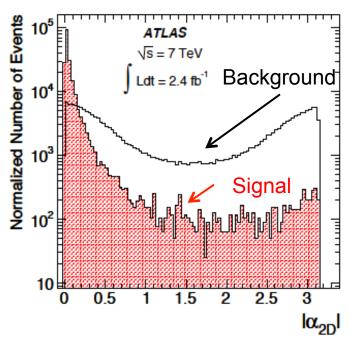

Backgrounds

Continuum background

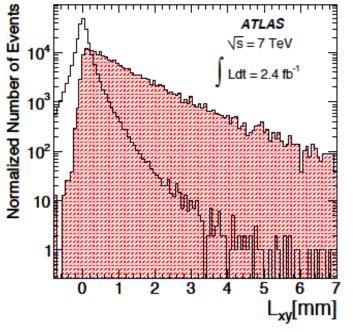
- originates from $b\bar{b} \rightarrow \mu^+ \mu^- X$
- smooth variation with B mass
 - background yield in signal region can be interpolated from events in B mass sidebands

Resonant background

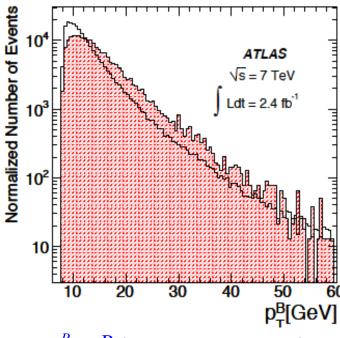
- B decays in which one or two hadrons are misidentified as muons
- Probability for a charged $K(\pi)$ to be mis-identified as muon is 0.2 (0.4) %
- Main backgrounds
 - single-fake events (eg. $\bar{B}_s \rightarrow K^- \mu^+ \nu$)
 - double-fake events (eg. $B_s \rightarrow K^+ \pi^-$, $B \rightarrow \pi^+\pi^-$, $B \rightarrow K^+\pi^-$)
- Estimated with simulated events to be
 0.24 events total (after final selection)



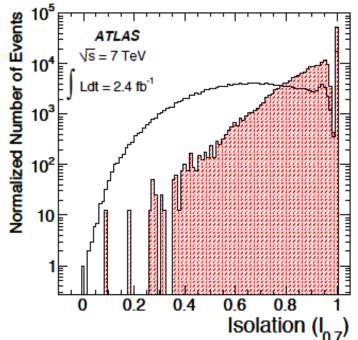
Channel	Signal Region	Sideband Regions
$B_s^0 o \mu^+\mu^-$	[5066,5666] MeV	[4766,5066] MeV [5666,5966] MeV
$B^{\pm} \to J/\psi K^{\pm}$	[5180,5380] MeV	[4930,5130] MeV [5430,5630] MeV

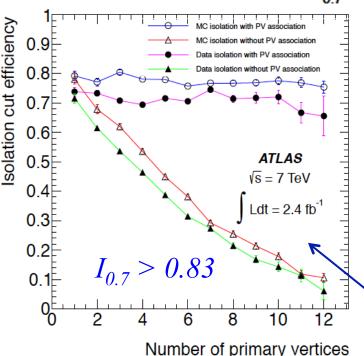

Blinded until analysis finalized

Background-discriminating Variables


- 14 variables combined into Boosted Decision Tree (BDT)
 - discriminate against backgrounds from prompt tracks, muons from different b decays, secondary vertices with additional particles, and non-B processes
 - most of the variables exploit precisely measured displaced secondary vertex originating from the long B_s lifetime

 α_{2D} = angle between Δx projection in transverse plane and B transverse momentum


 L_{xy} = projection of Δx on B transverse momentum

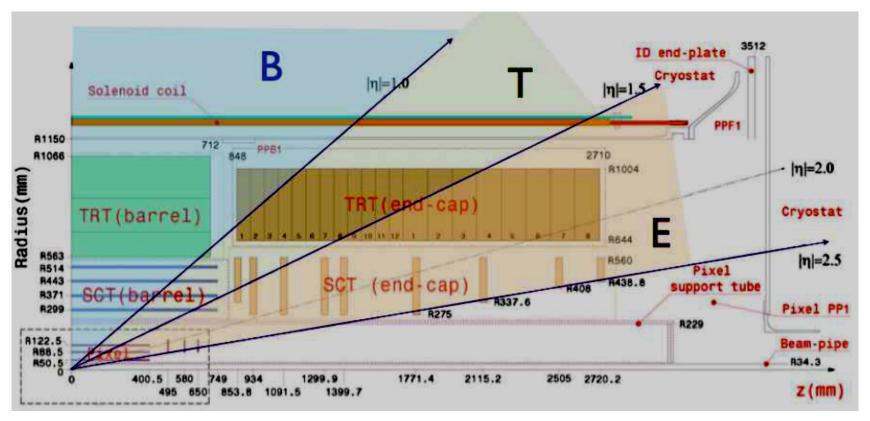


 $p_T^B = B$ transverse momentum

 $\Delta \vec{x} = \vec{x}_{SV} - \vec{x}_{PV}$ = vector between *B* decay vertex and primary vertex

Sensitivity of BDT to Pile-up

- Pile-up = multiple pp interactions per bunch crossing
 - Average # PVs in the data sample is 5
- Isolation $I_{0.7}$ is the variable in the BDT that is most sensitive to pile-up

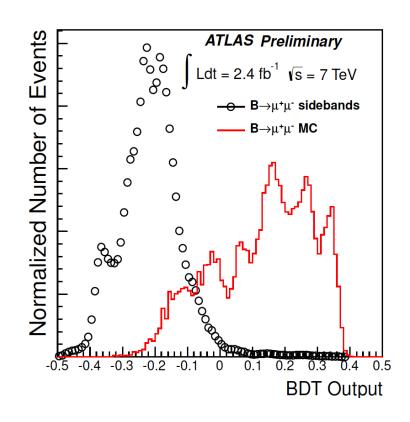

$$I_{0.7} = \frac{\left|\vec{p}_T^B\right|}{\left|\vec{p}_T^B\right| + \sum_{\Delta R < 0.7} \left|\vec{p}_T^{track}\right|} \quad \text{with } \Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

- $-I_{0.7}$ strongly depends on # PVs, if all tracks (except the B daughters) are included in the calculation
- Limiting the calculation to tracks coming from the primary vertex associated with the B candidate almost completely removes the dependence

Data = sideband-subtracted $B \rightarrow J/\psi K$ events $MC = simulated B \rightarrow J/\psi K$ events

Variation in B Mass Resolution

- Split signal candidates by $|\eta|$ region* and optimize subsamples separately
 - Three regions Barrel (B), Transition (T) and Endcap (E)
- B mass resolution becomes worse with increasing $|\eta|$
 - more multiple scattering and smaller magnetic field integral at large $|\eta|$
 - B mass resolutions: 60 MeV (B), 80 MeV (T), and 110 MeV (E)
 - Most B candidates are in Barrel region (51% (B), 24% (T), 25% (E))

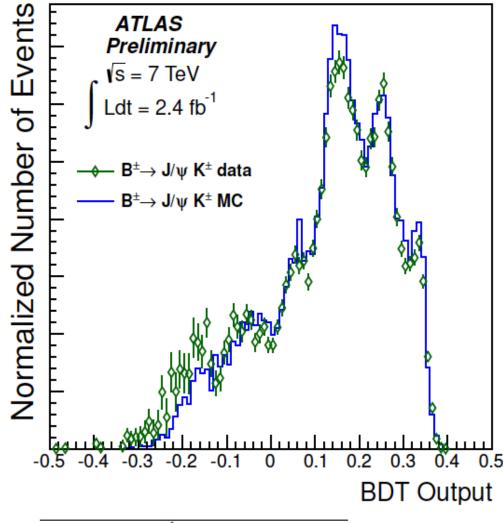


* The maximum $|\eta|$ of the 2 muon tracks determines the subsample.

BDT Performance and Optimization of Signal Selection

- Boosted Decision Tree (BDT)
 - Multivariate classifier chosen to combine 14 discriminating variables for improved signal-background separation
 - Trained on $B_s \rightarrow \mu\mu$ signal MC and mass sidebands in (50% of) data sample
 - Optimal cut between 0.23 and 0.27 depending on the $|\eta|$ subsample
- Maximize P for optimal performance of a 95% CL frequentist limit (a = 2) in a counting analysis [Punzi, arXiv:physics/0308063]
 - Optimize BDT output cut and invariant mass search region window

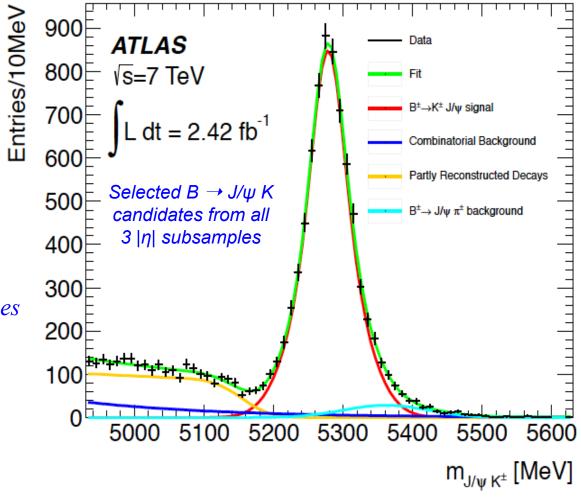
$ \eta_{max} $ Range	0-1.0	1.0-1.5	1.5-2.5
invariant mass window [MeV]	±116	±133	±171
BDT output threshold	0.234	0.245	0.270



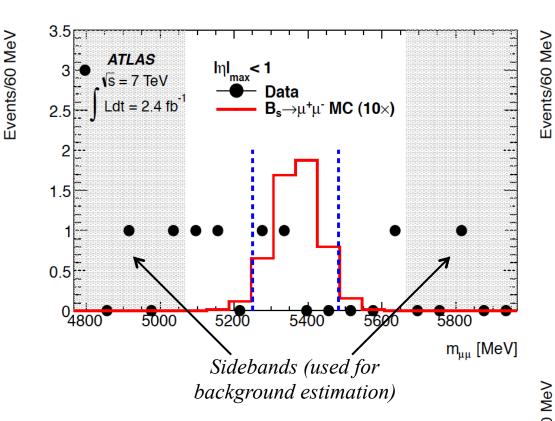
$$\mathcal{P} = \frac{\varepsilon_{Sig}}{\frac{a}{2} + \sqrt{N_{Bgd}}}$$

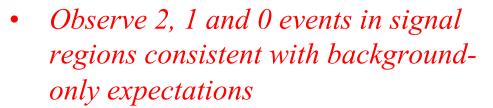
Acceptance and Efficiency Ratios

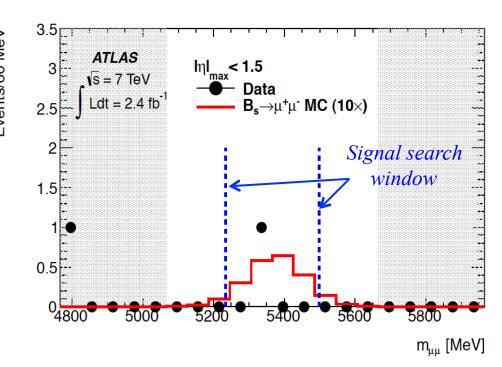
$$R_{A\varepsilon} = \frac{A_{J/\psi K^{\pm}}}{A_{\mu^{+}\mu^{-}}} \times \frac{\varepsilon_{J/\psi K^{\pm}}}{\varepsilon_{\mu^{+}\mu^{-}}}$$

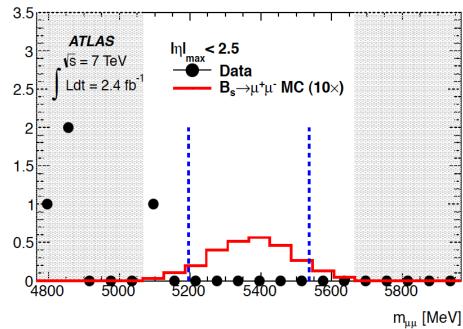

- Dominant systmatic uncertainty in $R_{A\varepsilon}$ is due data MC discrepancies
 - Re-weight events wrt most sensitive variables in BDT
 - Due to large correlations between decay-length sensitive variables, L_{xy} correction effectively removes differences in other variables
 - Differences in p_T and η of B daughters, #PV and pixel detector occupancy are accounted for in systematics
- Systematic change in $R_{A\varepsilon}$ is 0.6%
 - changes $A \times \varepsilon$ for individual samples are 10-20%, but highly correlated between $B_s \to \mu\mu$ and reference mode $B \to J/\psi$ K

$ \eta_{max} $	$R_{A\epsilon}^i$	Δ %	Δ %
Range		Stat.	Syst.
0-1.0	0.274	3.1	3.1
1.0-1.5	0.202	4.8	5.5
1.5-2.5	0.143	5.3	5.9


$B^{\pm} \rightarrow J/\psi K^{\pm} Yield$


- Extract $B^{\pm} \rightarrow J/\psi$ K^{\pm} yield with binned likelihood fit to B mass distribution separately for each $|\eta|$ subsample
 - Signal PDF: double Gaussian with common mean
 - Background PDFs:
 - Exponential (combinatorial background) + Exponential times complementary error function (partially reconstructed B decays) + Gaussian (B→J/ψ π)
- Systematic error estimation
 - vary bin size
 - use different signal and background PDFs
 - use unbinned likelihood fit with event-by-event mass resolution


$ \eta_{max} $ Range	0-1.0	1.0-1.5	1.5-2.5
$B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$	4300	1410	1130
statistical uncertainty	±1.6%	$\pm 2.8\%$	$\pm 3.0\%$
systematic uncertainty	±2.9%	±7.4%	±14.1%


Opening the Signal Box

 MC signal distributions correspond to roughly ×10 SM prediction (ie. $BR(B_s \to \mu\mu) = 3.5 \times 10^{-8}$)

Putting it all together...

$ \eta_{max} $ Range	0-1.0	1.0-1.5	1.5-2.5
$B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$	4300	1410	1130
statistical uncertainty	±1.6%	$\pm 2.8\%$	±3.0%
systematic uncertainty	±2.9%	±7.4%	±14.1%

η _{max} Range	$R^i_{A\epsilon}$	Δ % Stat.	Δ % Syst.
0-1.0	0.274	3.1	3.1
1.0-1.5	0.202	4.8	5.5
1.5-2.5	0.143	5.3	5.9

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(B^{\pm} \to J/\psi K^{\pm} \to \mu^{+}\mu^{-}K^{\pm}) \times \frac{f_{u}}{f_{s}} \times \frac{N_{\mu^{+}\mu^{-}}}{N_{J/\psi K^{\pm}}} \times \frac{A_{J/\psi K^{\pm}}}{A_{\mu^{+}\mu^{-}}} \times \frac{\varepsilon_{J/\psi K^{\pm}}}{\varepsilon_{\mu^{+}\mu^{-}}}$$

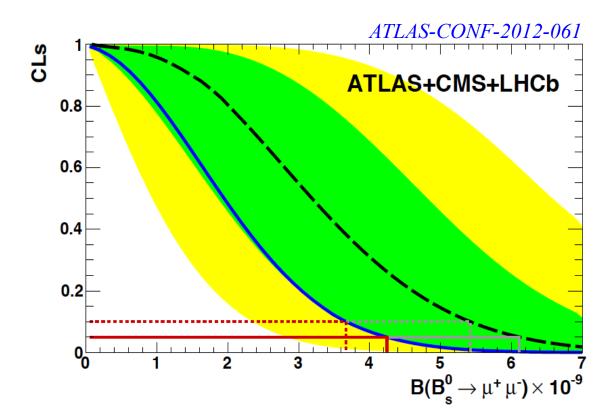
$$= N_{\mu^{+}\mu^{-}} \times SES$$

$ \eta_{max} $ Range	0-1.0	1.0-1.5	1.5-2.5
$SES = (\epsilon \epsilon_i)^{-1} [10^{-8}]$	0.71	1.6	1.4

$$1/(4.45 \pm 0.38) \times 10^{3}$$
 [PDG + LHCb]

BR Limit Extraction

- Use CL_s method to extract $B_s \rightarrow \mu\mu$ branching fraction
 - expected 95% CL limit $2.3^{+1.0}_{-0.5} \times 10^{-8}$ (determined before unblinding)


$$\mathcal{L} = \operatorname{Gauss}(\epsilon_{obs}|\epsilon, \sigma_{\epsilon}) \times \operatorname{Gauss}(R_{obs}^{bkg}|R^{bkg}, \sigma_{R^{bkg}}) \times \\ \prod_{i=1}^{N_{bin}} \operatorname{Poisson}(N_i^{obs}|\epsilon \epsilon_i BR + N_i^{bkg} + N_i^{B \to hh}) \times \\ \operatorname{Poisson}(N_{obs,i}^{bkg}|R^{bkg}, \sigma_{\epsilon_i}) \times \\ \operatorname{Gauss}(\epsilon_i^{obs}|\epsilon_i, \sigma_{\epsilon_i}) .$$

$$B(B_s \to \mu^+ \mu^-) < 2.2 \times 10^{-8}$$
 at 90% CL

p-value for background-only (background + SM) hypothesis is 44% (35%)

Combined ATLAS, CMS and LHCb Limit

- Limit is compatible with background +SM signal within 1 σ (1 -CL_{s+b} = 84%)
- p-value for background-only hypothesis $(1 CL_b)$: 5%
- Limit is getting close to SM prediction of $(3.2\pm0.2)\times10^{-9}$

Mode	Limit	ATLAS	CMS	LHCb 2010	LHCb 2011	Combined
	Bkg Only	23	(3.6)	65	3.4	2.3
$B_s^0 \to \mu^+ \mu^- \ (10^{-9})$	Bkg+SM		8.4		7.2	6.1
	Obs	22	7.7 (7.2)	56	4.5	4.2

$$B(B_s \to \mu^+ \mu^-) < 4.2 \times 10^{-9}$$
 at 95% CL

Conclusions

- ATLAS's rich heavy flavor physics program has expanded to rare decays
- Other ATLAS talks on b physics at this conference
 - C. Hawkes: Heavy flavor cross-sections
 - E. Kneringer: CP violation
 - N. Panikashvili: Mass and lifetime of Λ_b
 - R. Wang: Y and χ_b production
- Presented branching ratio limit from ATLAS on $B_s \rightarrow \mu\mu$ which is now published in Phys.Lett. B713 (2012) 387 and an ATLAS-CMS-LHCb combined limit (ATLAS-CONF-2012-061)
 - 95% CL limit is only 30% above Standard Model prediction
- More heavy flavor physics measurements from ATLAS will be coming soon
 - In particular an improved measurement of $B_s \rightarrow \mu\mu$ is in progress using more data and improved analysis techniques