Exclusive $b \rightarrow s \ell^+ \ell^-$ decays

- First attempts to fly -

Christoph Bobeth TU Munich – Excellence Cluster Universe

BEACH 2012 - Wichita

- I) Introduction to $b \rightarrow s \ell^+ \ell^-$
 - A) Motivation
 - B) Effective theory of $b \rightarrow s + (\gamma, \ell^+ \ell^-)$ decays
 - C) Theoretical approach to exclusive decays
- II) Optimised observables in $B \to K^*(\to K\pi)\ell^+\ell^-$
 - A) Form factor relations
 - B) @ Large Recoil
 - C) @ Low Recoil

III) First "global" fits of $b \rightarrow s \gamma$ and $b \rightarrow s \ell^+ \ell^-$ data

- Introduction -

Motivation

Effective theory

Exclusive decays

Tree: only $U_i \rightarrow D_j \& D_i \rightarrow U_j$ \Rightarrow charged current: $Q_i \neq Q_j$

Tree: only
$$U_i \rightarrow D_j \& D_i \rightarrow U_j$$

 \Rightarrow charged current: $Q_i \neq Q_j$

Loop: $D_i \rightarrow D_j$ (& $U_i \rightarrow U_j$) \Rightarrow neutral current (FCNC): $Q_i = Q_j$

 $H \rightarrow \ell \nu_{\ell}$

 $H_1 \rightarrow H_2 + \ell \nu_\ell$

 $\begin{array}{ll} H_1 \to H_2 H_3 & H_1 \to H_2 + \{\gamma, \, Z, \, g\} & H_1 \to \ell \overline{\ell} \\ \\ \{\gamma, \, Z, \, g\} \to \{\gamma, \ell \overline{\ell}, H_3\} & H_1 \to H_2 + \{\ell \overline{\ell}, \nu \overline{\nu}\} \end{array}$

$\mathcal{A} \sim G_F V_{ij}$	$\sim G_F V_{ij} V_{lk}^*$	$\sim G_F g \sum_a V_{ai} V_{aj}^* f(b)$	$(m_a) \sim G_F g^2 \sum_{a,b}$	$V_{ai}V_{aj}^*f(m_{a,b})$
C. Bobeth		BEACH 2012	July 26, 2012	4/1

Tree: only
$$U_i \rightarrow D_j \& D_i \rightarrow U_j$$

 \Rightarrow charged current: $Q_i \neq Q_j$

Loop: $D_i \rightarrow D_i$ (& $U_i \rightarrow U_i$) \Rightarrow neutral current (FCNC): $Q_i = Q_i$

 $H \rightarrow \ell \nu_{\ell}$ $H_1 \rightarrow H_2 + \ell \nu_\ell$

 $H_1 \rightarrow H_2 H_3$

 $H_1 \rightarrow H_2 + \{\gamma, Z, g\}$ $\{\gamma, Z, g\} \rightarrow \{\gamma, \ell\bar{\ell}, H_3\}$ $H_1 \rightarrow H_2 + \{\ell\bar{\ell}, \nu\bar{\nu}\}$

 $H_1 \rightarrow \ell \bar{\ell}$

$\mathcal{A} \sim \textit{G}_{\textit{F}}\textit{V}_{ij}$	$\sim G_F V_{ij} V_{lk}^*$	$\sim G_F g \sum_a V_{ai} V^*_{aj} f($	$(m_a) \sim G_F g^2 \sum_{a,b}$	$\int_{b} V_{ai} V_{aj}^* f(m_{a,b})$
C. Bobeth		BEACH 2012	July 26, 2012	4/1

In the SM: FCNC-decays w.r.t. tree-decays are

quantum fluctuations = loop-suppressed

- ⇒ no suppression of contributions beyond SM (BSM) wrt SM itself
- \Rightarrow indirect search for BSM signals

BUT requires high precision, experimentally and theoretically !!!

# of evts	BaBar 2012	Belle	2011	2011	CP-averaged results
	471 M BB	605 fb ⁻¹	6.8 fb ⁻¹	1 fb ⁻¹	vetoed q ² region
$B^0 \to K^{*0} \ell \bar{\ell}$	$137\pm44^\dagger$	$247\pm54^\dagger$	164 ± 15	900 ± 34	around J/ψ and ψ'
$B^+ o K^{*+} \ell \bar{\ell}$			20 ± 6	76 ± 16	
$B^+ \to K^+ \ell \bar{\ell}$	$153\pm41^{\dagger}$	$162\pm38^{\dagger}$	234 <u>+</u> 19	1250 ± 42	B^0 and B^{\pm}
$B^0 \to K^0_S \ell \bar{\ell}$			28 ± 9	60 ± 19	Poher or Vive1204 2022
$B_s \rightarrow \phi \ell \bar{\ell}$			49 ± 7	77 ± 10	Babar arXiv:1204.3933 Belle arXiv:0904.0770
$\Lambda_b \to \Lambda \ell \bar{\ell}$			24 ± 5		CDF arXiv:1107.3753 + 1108.0695 LHCb LHCb-CONF-2012-008
$B^+ \to \pi^+ \ \ell \bar{\ell}$		limit		25 ± 7	(-003, -006), arXiv:1205.3422

# of evts	BaBar	Belle	CDF	LHCb	
	2012	2009	2011	2011	CP-averaged results
	471 M <i>BB</i>	605 fb ⁻¹	6.8 fb ⁻¹	1 fb ⁻¹	vetoed <i>q</i> ² region
$B^0 \to K^{*0} \ell \bar{\ell}$	$137\pm44^\dagger$	$247\pm54^\dagger$	164 ± 15	900 ± 34	around J/ψ and ψ'
$B^+ o K^{*+} \ell \bar{\ell}$			20 ± 6	76 ± 16	
$B^+ \to K^+ \ell \bar{\ell}$	$153\pm41^{\dagger}$	$162\pm38^{\dagger}$	234 ± 19	1250 ± 42	\bullet ⁺ unknown mixture of B^0 and B^{\pm}
$B^0 \to K^0_S \ell \bar{\ell}$			28 ± 9	60 ± 19	Deber erViru1004 2020
$B_s \rightarrow \phi \ell \bar{\ell}$			49 ± 7	77 ± 10	Belle arXiv:0904.0770
$\Lambda_b \to \Lambda \ell \bar \ell$			24 ± 5		CDF arXiv:1107.3753 + 1108.0695
$B^+ \to \pi^+ \ \ell \bar{\ell}$		limit		25 ± 7	(-003, -006), arXiv:1205.3422

Outlook / Prospects

Belle reprocessed all data 711 fb⁻¹ \rightarrow final analysis ?

CDF recorded about 9.6 fb⁻¹ \rightarrow final analysis presented at ICHEP 2012

LHCb not yet analysed $B^+ \rightarrow K^+ \mu \bar{\mu} + \text{about 1.2 fb}^{-1}$ by end of 2012

 \rightarrow by the end of 2017 about 5 - 7 fb⁻¹

ATLAS / CMS pursue also analysis of $B \rightarrow K^* \mu \bar{\mu}$ and $B \rightarrow K \mu \bar{\mu}$

Belle II / SuperB expects about (10-15) K events $B \to K^* \ell \bar{\ell} \ (\gtrsim 2020)$ [A.J.Bevan arXiv:1110.3901]

# of evts	BaBar 2012 471 M <i>BB</i>	Belle 2009 605 fb ⁻¹	CDF 2011 6.8 fb ⁻¹	LHCb 2011 1 fb ⁻¹	 CP-averaged results vetoed q² region
$B^0 \to K^{*0} \ell \overline{\ell}$	$137\pm44^\dagger$	$247\pm54^{\dagger}$	164 <u>+</u> 15	900 ± 34	around J/ψ and ψ'
$B^+ \to K^{*+} \ell \ell$			20 ± 6	76 ± 16	
$B^+ \to K^+ \ell \bar{\ell}$	$153 \pm 41^{\dagger}$	$162 \pm 38^{\dagger}$	234 ± 19	1250 <u>+</u> 42	B^0 and B^{\pm}
$B^0 \to K^0_S \ell \bar{\ell}$			28 ± 9	60 ± 19	Paber or Viv:1204 2022
$B_s \rightarrow \phi \ell \bar{\ell}$			49 <u>+</u> 7	77 ± 10	Belle arXiv:0904.0770
$\Lambda_b \to \Lambda \ell \bar\ell$			24 ± 5		CDF arXiv:1107.3753 + 1108.0695
$B^+ \to \pi^+ \ \ell \bar{\ell}$		limit		25 ± 7	(-003, -006), arXiv:1205.3422

Outlook / Prospects

Belle reprocessed all data 711 fb⁻¹ \rightarrow final analysis ?

CDF recorded about 9.6 fb⁻¹ \rightarrow final analysis presented at ICHEP 2012

LHCb not yet analysed $B^+ \rightarrow K^+ \mu \bar{\mu} + \text{about 1.2 fb}^{-1}$ by end of 2012

 \rightarrow by the end of 2017 about 5 - 7 fb $^{-1}$

ATLAS / CMS pursue also analysis of $B \to K^* \mu \bar{\mu}$ and $B \to K \mu \bar{\mu}$

Belle II / SuperB expects about (10-15) K events $B \to K^* \ell \bar{\ell} \ (\gtrsim 2020)$ [A.J.Bevan arXiv:1110.3901]

# of evts	BaBar 2012	Belle 2009	2011	2011	CP-ave
	471 M <i>BB</i>	605 fb ⁻¹	6.8 fb ⁻¹	1 fb ⁻¹	vetoed
$B^0 \to K^{*0} \ell \bar{\ell}$	$137\pm44^{\dagger}$	$247\pm54^{\dagger}$	164 <u>+</u> 15	900 ± 34	around
$B^+ \to K^{*+} \ell \ell$			20 ± 6	76 ± 16	
$B^+ \to K^+ \ell \bar{\ell}$	$153 \pm 41^{\dagger}$	$162 \pm 38^{\dagger}$	234 ± 19	1250 <u>+</u> 42	B^0 and
$B^0 \to K^0_S \ell \bar{\ell}$			28 ± 9	60 ± 19	Poher or Viv:1204
$B_s \rightarrow \phi \ell \bar{\ell}$			49 <u>+</u> 7	77 ± 10	Belle arXiv:0904.0
$\Lambda_b \to \Lambda \ell \bar\ell$			24 ± 5		CDF arXiv:1107.3
$B^+ \to \pi^+ \ \ell \bar{\ell}$		limit		25 ± 7	(-003, -006)

raged results

- q² region J/ψ and ψ' nces
- wn mixture of R±

3933 770 753 + 1108.0695 F-2012-008 arXiv:1205.3422

Outlook / Prospects Belle reprocessed all data 711 fb⁻¹ \rightarrow final analysis ? CDF record More details on data from HEP 2012 BaBar Justin Albert on Tuesday LHCb not ye of 2012 CDF Robert F. Harr on Tuesday \rightarrow bv LHCb David Hutchcroft on Thursday ATLAS / CMS pursu Belle II / SuperB expects about (10-15) K events $B \to K^* \ell \bar{\ell} \ (\gtrsim 2020)$ [A.J.Bevan arXiv:1110.3901] C. Bobeth **BEACH 2012** July 26, 2012 5/1

B-Hadron decays are a Multi-scale problem

Typical interaction (IA) scales					
electroweak IA	>>>	hadron in restframe, external momenta	>>	QCD-bound state effects	
$M_W pprox 80 \text{ GeV}$ $M_Z pprox 91 \text{ GeV}$		$p_{\rm ext} \sim M_B \approx 5 { m GeV}$		$\Lambda_{QCD}\approx 0.5~GeV$	
$m_t \approx 172~{ m GeV}$					

electroweak IA is "short-distance = local" compared to QCD IA

B-Hadron decays are a Multi-scale problem

Typical interaction (IA) scales					
electroweak IA	>>>	hadron in restframe, external momenta	>>>	QCD-bound state effects	
$M_W pprox 80 \text{ GeV}$ $M_Z pprox 91 \text{ GeV}$		$p_{ m ext} \sim M_B pprox 5~ m GeV$		$\Lambda_{\rm OCD} \approx 0.5~{\rm GeV}$	
$m_t \approx 172 \text{ GeV}$					

electroweak IA is "short-distance = local" compared to QCD IA

 \Rightarrow Effective theory (EFT) of electroweak IA = separation of scales

 $\Delta B = 1$ EFT in the SM for $b \rightarrow s$

 $\Delta B = 1$ EFT in the SM for $b \rightarrow s$

Extension of EFT beyond the SM ...

$$\begin{aligned} \mathcal{L}_{\text{eff}}\left(\mu_{b}\right) &= \mathcal{L}_{\text{QED}\times\text{QCD}}\left(u, d, s, c, b, e, \mu, \tau, ???\right) \\ &+ \frac{4G_{F}}{\sqrt{2}} V_{\text{CKM}} \sum_{\text{SM}} (C_{i} + \Delta C_{i}) \mathcal{O}_{i} + \sum_{\text{NP}} C_{j} \mathcal{O}_{j} (???) \end{aligned}$$

- $\Rightarrow \Delta C_i \dots$ NP contributions to SM C_i
- $\Rightarrow \sum_{NP} C_j \mathcal{O}_j \dots NP$ operators (e.g. $C'_{7,9,10}, C^{(\prime)}_{S,P}, \dots$)
- \Rightarrow ??? ... additional light degrees of freedom (\Leftarrow not pursued in the following)

Extension of EFT beyond the SM ...

$$\begin{aligned} \mathcal{L}_{\text{eff}}\left(\mu_{b}\right) &= \mathcal{L}_{\text{QED}\times\text{QCD}}\left(u, d, s, c, b, e, \mu, \tau, ???\right) \\ &+ \frac{4G_{F}}{\sqrt{2}} V_{\text{CKM}} \sum_{\text{SM}} (C_{i} + \Delta C_{i}) \mathcal{O}_{i} + \sum_{\text{NP}} C_{j} \mathcal{O}_{j} (???) \end{aligned}$$

- $\Rightarrow \Delta C_i \dots$ NP contributions to SM C_i
- $\Rightarrow \sum_{NP} C_j \mathcal{O}_j \dots NP$ operators (e.g. $C'_{7,9,10}, C^{(\prime)}_{S,P}, \dots$)
- \Rightarrow ??? ... additional light degrees of freedom (\leftarrow not pursued in the following)
- model-dep. 1) decoupling of new heavy particles @ NP scale: $\mu_{NP} \gtrsim M_W$ 2) RG-running to lower scale $\mu_b \sim m_b$ (potentially tower of EFT's) C_i are correlated, depend on fundamental parameters

model-indep. extending SM EFT-Lagrangian \rightarrow new C_j C_j are UN-correlated free parameters

BEACH 2012

Extension of EFT beyond the SM ...

$$\begin{split} \mathcal{L}_{\text{eff}}\left(\mu_{b}\right) &= \mathcal{L}_{\text{QED}\times\text{QCD}}\left(u, d, s, c, b, e, \mu, \tau, ???\right) \\ &+ \frac{4G_{F}}{\sqrt{2}} V_{\text{CKM}} \sum_{\text{SM}} (C_{i} + \Delta C_{i}) \mathcal{O}_{i} + \sum_{\text{NP}} C_{j} \mathcal{O}_{j} (???) \end{split}$$

- $\Rightarrow \Delta C_i \dots$ NP contributions to SM C_i
- $\Rightarrow \sum_{NP} C_j \mathcal{O}_j \dots NP$ operators (e.g. $C'_{7,9,10}, C^{(\prime)}_{S,P}, \dots$)
- \Rightarrow ??? ... additional light degrees of freedom (\leftarrow not pursued in the following)
- model-dep. 1) decoupling of new heavy particles @ NP scale: $\mu_{NP} \gtrsim M_W$ 2) RG-running to lower scale $\mu_b \sim m_b$ (potentially tower of EFT's) C_i are correlated, depend on fundamental parameters
- model-indep. extending SM EFT-Lagrangian \rightarrow new C_j C_j are UN-correlated free parameters

Towards Observables

 \Rightarrow EFT universal starting point for calculation of observables

III Non-perturbative input required for hadronic matrix elements

Towards Observables

 \Rightarrow EFT universal starting point for calculation of observables

III Non-perturbative input required for hadronic matrix elements

Inclusive decays: $B \to X_{s,d} \gamma$, $B \to X_{s,d} \ell \bar{\ell}$, $B \to X_{s,d} \nu \bar{\nu}$, $B \to X_{q}$

- Heavy Quark Expansion: only few universal non-perturbative parameters from $B \rightarrow X_{u,c} \, \ell \bar{\nu}_{\ell}$ and $B \rightarrow X_s \gamma$ photon spectrum
- only @ $e^+e^- B$ -factories

Towards Observables

 \Rightarrow EFT universal starting point for calculation of observables

III Non-perturbative input required for hadronic matrix elements

Inclusive decays: $B \to X_{s,d} \gamma$, $B \to X_{s,d} \ell \bar{\ell}$, $B \to X_{s,d} \nu \bar{\nu}$, $B \to X_{q}$

- Heavy Quark Expansion: only few universal non-perturbative parameters from $B \rightarrow X_{u,c} \, \ell \bar{\nu}_{\ell}$ and $B \rightarrow X_s \gamma$ photon spectrum
- − only @ e⁺e[−]− B-factories

Exclusive decays

- $-B_{s,d} \rightarrow \ell \bar{\ell}$: decay constants $f_{B_{s,d}}$ from QCD-Lattice calculation
- $B \rightarrow \{K, K^*\} + \ell \bar{\ell}$: (q^2 = dilepton invariant mass)
 - @ low-q²: QCD factorisation (QCDF)
 - @ high- q^2 : local OPE of 4-quark contributions
- $B \rightarrow \{K, K^*\} + \nu \bar{\nu}$
- $\Rightarrow B \rightarrow \{K, K^*\}$ form factors from: Light-Cone Sum Rules LCSR (@ low-q²)

or QCD-Lattice (@ high- q^2)

... other decays, $\Delta F = 2, \ldots$

Exclusive $B \to \{K, K^*\} + \ell^+ \ell^-$ Hadronic amplitude $B \to K^* (\to K\pi) \ell^+ \ell^-$ neglecting 4-quark operators $\mathcal{M} = \langle K\pi | C_7 \times \overbrace{\xi_{\gamma}}^{b} + C_{9,10} \times \overbrace{\ell}^{b} = [B\rangle$ Exclusive $B \to \{K, K^*\} + \ell^+ \ell^-$ Hadronic amplitude $B \to K^* (\to K\pi) \ell^+ \ell^-$ neglecting 4-quark operators $\mathcal{M} = \langle K\pi | C_7 \times \underbrace{\overset{b}{\underset{v}{\longrightarrow}} \overset{s}{\underset{v}{\longrightarrow}} + C_{9,10} \times \underbrace{\overset{b}{\underset{l}{\longrightarrow}} \overset{s}{\underset{l}{\longrightarrow}} | B \rangle$

 ${\cal M}$ may expressed in terms of transversity amplitudes ($m_\ell=0$)

... using narrow width approximation & intermediate K* on-shell

 \Rightarrow "just" requires $B \rightarrow K^*$ form factors V, $A_{1,2}$, $T_{1,2,3}$ in K*-transversity amp's:

$$\begin{aligned} A_{\perp}^{L,R} &\sim \sqrt{2\,\lambda} \left[(C_9 \mp C_{10}) \frac{V}{M_B + M_{K^*}} + \frac{2\,m_b}{q^2} C_7 T_1 \right], \\ A_{\parallel}^{L,R} &\sim -\sqrt{2} \left(M_B^2 - M_{K^*}^2 \right) \left[(C_9 \mp C_{10}) \frac{A_1}{M_B - M_{K^*}} + \frac{2\,m_b}{q^2} C_7 T_2 \right], \\ A_0^{L,R} &\sim -\frac{1}{2\,M_{K^*} \sqrt{q^2}} \left\{ (C_9 \mp C_{10}) \left[\dots A_1 + \dots A_2 \right] + 2\,m_b C_7 \left[\dots T_2 + \dots T_3 \right] \right\}. \end{aligned}$$

C. Bobeth

Exclusive $B \rightarrow \{K, K^*\} + \ell^+ \ell^-$

... but 4-Quark operators have to be included

- current-current $b \rightarrow s + (u\bar{u}, c\bar{c})$
- QCD-penguin operators $b \rightarrow s + q\bar{q} (q = u, d, s, c)$

 \Rightarrow large peaking background around $q^2 = (M_{J/\psi})^2, (M_{\psi'})^2$:

 $B \rightarrow K^{(*)}(q\bar{q}) \rightarrow K^{(*)}\ell^+\ell^-$

Exclusive $B \rightarrow \{K, K^*\} + \ell^+ \ell^-$

q^2 - regions in b	$\rightarrow S\ell^+\ell^ \kappa^{(*)}$ -energy in ℓ	B-rest frame: $E_{K^{(*)}} = (M_B^2 + M_{K^{(*)}}^2 - q^2)/(2M_B)$
q ² -region	low- q^2 : $q^2 \ll M_B^2$	high- q^2 : $q^2 \sim M_B^2$
K ^(*) -recoil	large recoil: $E_{K^{(*)}} \sim M_B/2$	low recoil: $E_{K^{(*)}} \sim M_{K^{(*)}} + \Lambda_{\text{QCD}}$
theory method	QCDF, nl OPE: $q^2 \in [1, 6]$ GeV ²	OPE + HQET: $q^2 \ge (14 \dots 15) \text{ GeV}^2$

[QCDF: Beneke/Feldmann/Seidel hep-ph/0106067, hep-ph/0412400] [non-local OPE: Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945]

[local OPE: Grinstein/Pirjol hep-ph/0404250; Beylich/Buchalla/Feldmann arXiv:1101.5118]

C. Bobeth

BEACH 2012

July 26, 2012 10 / 1

Exclusive $B \rightarrow \{K, K^*\} + \ell^+ \ell^-$

C. Bobeth

BEACH 2012

Open Issues

- B → K and B → K* form factors at high-q² (from Lattice) preliminary results without final uncertainty estimate: [Liu/Meinel/Hart/Horgan/Müller/Wingate arXiv:0911.2370, 1101.2726]
- better understanding of sub-leading contributions
 - 1) QCD factorization at low-q²
 - 2) OPE at high- q^2 known up to sub-leading form factors (Lattice?)

[Grinstein/Pirjol hep-ph/0404250; Beylich/Buchalla/Feldmann arXiv:1101.5118]

inclusion of cc
-tails at low-q² in numerical evaluation

[Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945]

- non-P wave Kπ background to Kπ pairs from K* at high experimental statistics ???
- ⇒ Last point addressed recently:

[Becirevic/Tayduganov arXiv:1207.4004]

S-wave $K\pi$ pairs from $B \to K_0^* \ell^+ \ell^-$: negligible @ high- q^2 , error below 10% for $q^2 \lesssim 1 \text{ GeV}^2$ and $4 \text{ GeV}^2 \lesssim M_{J\psi}^2$,

upto 25% around $q^2 \approx 2 \text{ GeV}^2$ (depending on observable)

- Optimised Observables – in $B \rightarrow K^* (\rightarrow K\pi) \ell^+ \ell^-$ @ Large Recoil = low- q^2 @ Low Recoil = high- q^2

$B \rightarrow K^* [\rightarrow K\pi] + \ell^+ \ell^-$:

4-body decay with intermediate on-shell K^* (vector)

1)
$$q^2 = m_{\ell\bar{\ell}}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_B - p_{K^*})^2$$

2) $\cos\theta_\ell$ with $\theta_\ell \angle (\vec{p}_B, \vec{p}_\ell)$ in $(\ell\bar{\ell}) - \text{c.m. system}$
3) $\cos\theta_K$ with $\theta_K \angle (\vec{p}_B, \vec{p}_K)$ in $(K\pi) - \text{c.m. system}$

4) $\phi \angle (\vec{p}_{\mathcal{K}} imes \vec{p}_{\pi}, \, \vec{p}_{\bar{\ell}} imes \vec{p}_{\ell})$ in *B*-RF

$B \to K^* [\to K\pi] + \ell^+ \ell^-$:

4-body decay with intermediate on-shell *K** (vector) 1) $q^2 = m_{\ell\bar{\ell}}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_B - p_{K*})^2$ 2) $\cos\theta_\ell$ with $\theta_\ell \angle (\vec{p}_B, \vec{p}_\ell)$ in $(\ell\bar{\ell}) - \text{c.m. system}$ 3) $\cos\theta_K$ with $\theta_K \angle (\vec{p}_B, \vec{p}_K)$ in $(K\pi) - \text{c.m. system}$ 4) $\phi \angle (\vec{p}_K \times \vec{p}_\pi, \vec{p}_{\bar{\ell}} \times \vec{p}_\ell)$ in *B*-RF

$\begin{aligned} J_{i}(q^{2}) &= \text{``Angular Observables''} \\ &\frac{32\pi}{9} \frac{d^{4}\Gamma}{dq^{2} \operatorname{dcos} \theta_{\ell} \operatorname{dcos} \theta_{K} \operatorname{d\phi}} = J_{1s} \sin^{2}\theta_{K} + J_{1c} \cos^{2}\theta_{K} + (J_{2s} \sin^{2}\theta_{K} + J_{2c} \cos^{2}\theta_{K}) \cos 2\theta_{\ell} \\ &+ J_{3} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \cos 2\phi + J_{4} \sin 2\theta_{K} \sin 2\theta_{\ell} \cos\phi + J_{5} \sin 2\theta_{K} \sin\theta_{\ell} \cos\phi \\ &+ (J_{6s} \sin^{2}\theta_{K} + J_{6c} \cos^{2}\theta_{K}) \cos\theta_{\ell} + J_{7} \sin 2\theta_{K} \sin\theta_{\ell} \sin\phi \\ &+ J_{8} \sin 2\theta_{K} \sin 2\theta_{\ell} \sin\phi + J_{9} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \sin 2\phi \end{aligned}$

$B \to K^* [\to K\pi] + \ell^+ \ell^-$:

C. Bobeth

4-body decay with intermediate on-shell *K** (vector) 1) $q^2 = m_{\ell\bar{\ell}}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_B - p_{K*})^2$ 2) $\cos\theta_\ell$ with $\theta_\ell \angle (\vec{p}_B, \vec{p}_\ell)$ in $(\ell\bar{\ell}) - \text{c.m. system}$ 3) $\cos\theta_K$ with $\theta_K \angle (\vec{p}_B, \vec{p}_K)$ in $(K\pi) - \text{c.m. system}$ 4) $\phi \angle (\vec{p}_K \times \vec{p}_\pi, \vec{p}_{\bar{\ell}} \times \vec{p}_\ell)$ in *B*-RF

$J_{i}(q^{2}) = \text{``Angular Observables''}$ $\frac{32\pi}{9} \frac{d^{4}\Gamma}{dq^{2} \operatorname{dcos} \theta_{\ell} \operatorname{dcos} \theta_{K} d\phi} = J_{1s} \sin^{2}\theta_{K} + J_{1c} \cos^{2}\theta_{K} + (J_{2s} \sin^{2}\theta_{K} + J_{2c} \cos^{2}\theta_{K}) \cos 2\theta_{\ell}$ $+ J_{3} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \cos 2\phi + J_{4} \sin 2\theta_{K} \sin 2\theta_{\ell} \cos\phi + J_{5} \sin 2\theta_{K} \sin\theta_{\ell} \cos\phi$ $+ (J_{6s} \sin^{2}\theta_{K} + J_{6c} \cos^{2}\theta_{K}) \cos\theta_{\ell} + J_{7} \sin 2\theta_{K} \sin\theta_{\ell} \sin\phi$ $+ J_{8} \sin 2\theta_{K} \sin 2\theta_{\ell} \sin\phi + J_{9} \sin^{2}\theta_{K} \sin^{2}\theta_{\ell} \sin^{2}\theta_{\ell} \sin2\phi$

 \Rightarrow "2 \times (12 + 12) = 48" if measured separately: A) decay + CP-conj and B) for $\ell=e,\,\mu$

	BEACH 2012	July 26, 2012	13 / 1
--	------------	---------------	--------

$B \rightarrow K^* [\rightarrow K\pi] + \ell^+ \ell^-$:

4-body decay with intermediate on-shell K^* (vector) 1) $q^2 = m_{\ell\bar{\ell}}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_B - p_{K^*})^2$ 2) $\cos\theta_\ell$ with $\theta_\ell \angle (\vec{p}_B, \vec{p}_\ell)$ in $(\ell\bar{\ell}) - \text{c.m. system}$ 3) $\cos\theta_K$ with $\theta_K \angle (\vec{p}_B, \vec{p}_K)$ in $(K\pi) - \text{c.m. system}$ 4) $\phi \angle (\vec{p}_K \times \vec{p}_\pi, \vec{p}_{\bar{\ell}} \times \vec{p}_\ell)$ in *B*-RF

CP-conj. decay $B^0 \to K^{*0} (\to K^+ \pi^-) \ell^+ \ell^-$: $d^4 \overline{\Gamma}$ from $d^4 \Gamma$ by replacing

CP-even	1	<i>J</i> _{1,2,3,4,7}	\longrightarrow	$+ \overline{J}_{1,2,3,4,7}[\delta_W \to -\delta_W]$
CP-odd	:	J 5,6,8,9	\longrightarrow	$- \ \overline{J}_{5,6,8,9}[\delta_W \to -\delta_W]$

with weak phases δ_W conjugated

$B \rightarrow K^* [\rightarrow K\pi] + \ell^+ \ell^-$:

4-body decay with intermediate on-shell *K** (vector) 1) $q^2 = m_{\ell\bar{\ell}}^2 = (p_\ell + p_{\bar{\ell}})^2 = (p_B - p_{K^*})^2$ 2) $\cos\theta_\ell$ with $\theta_\ell \angle (\vec{p}_B, \vec{p}_\ell)$ in $(\ell\bar{\ell}) - c.m.$ system 3) $\cos\theta_K$ with $\theta_K \angle (\vec{p}_B, \vec{p}_K)$ in $(K\pi) - c.m.$ system 4) $\phi \angle (\vec{p}_K \times \vec{p}_\pi, \vec{p}_{\bar{\ell}} \times \vec{p}_\ell)$ in *B*-RF

CP-conj. decay $B^0 \to K^{*0} (\to K^+ \pi^-) \ell^+ \ell^-$: $d^4 \overline{\Gamma}$ from $d^4 \Gamma$ by replacing

CP-even	:	<i>J</i> _{1,2,3,4,7}	\rightarrow	$+ \overline{J}_{1,2,3,4,7}[\delta_W \to -\delta_W]$
CP-odd	:	J 5,6,8,9	\rightarrow	$-\overline{J}_{5,6,8,9}[\delta_W \rightarrow -\delta_W]$

with weak phases δ_W conjugated

1) CP-odd : $A_{CP} \sim (J_i - \overline{J}_i) \sim d^4(\Gamma + \overline{\Gamma})$ = flavour-untagged *B* samples

2) (naive) T-odd $J_{7,8,9}$: $A_{CP} \sim \cos \delta_s \sin \delta_W \rightarrow$ not suppressed by small strong phases δ_s

[CB/Hiller/Piranishvili arXiv:0805.2525, Altmannshofer et al. arXiv:0811.1214]

C. Bobeth	BEACH 2012	July 26, 2012	13 / 1	

Angular observables

$$J_{i}(q^{2}) \sim \{\text{Re, Im}\} \left[A_{m}^{L,R} \left(A_{n}^{L,R}\right)^{*}\right]$$
$$\sim \sum_{a} (C_{a}F_{a}) \sum_{b} (C_{b}F_{b})^{*}$$

 $A_m^{L,R} \dots K^*$ -transversity amplitudes $m = \perp, \parallel, 0$

 $C_a \dots$ short-distance coefficients $F_a \dots$ form factors

Angular observables

$$J_{i}(q^{2}) \sim \{\text{Re, Im}\} \left[A_{m}^{L,R} \left(A_{n}^{L,R} \right)^{*} \right]$$
$$\sim \sum_{a} (C_{a}F_{a}) \sum_{b} (C_{b}F_{b})^{*}$$

 $A_m^{L,R} \dots K^*$ -transversity amplitudes $m = \bot, \parallel, 0$ $C_a \dots$ short-distance coefficients $F_a \dots$ form factors

simplify when using form factor relations:

 $\begin{array}{ll} m_b \to \infty \mbox{ limit:} & [\mbox{Isgur/Wise PLB232 (1989) 113, PLB237 (1990) 527]} \\ T_1 \approx V, & T_2 \approx A_1, & T_3 \approx A_2 \, \frac{M_B^2}{q^2} \\ \mbox{large K^* recoil limit: E_{K^*} \sim M_B$ & [\mbox{Charles et al. hep-ph/9812358, Beneke/Feldmann hep-ph/0008255]} \\ \xi_{\perp} \equiv \frac{M_B}{M_B + M_{K$^*}} \, V \approx \frac{M_B + M_{K$^*}}{2E_{K$^*}} A_1 \approx T_1 \approx \frac{M_B}{2E_{K$^*}} \, T_2 \\ \xi_{\parallel} \equiv \frac{M_B + M_{K$^*}}{2E_{K$^*}} A_1 - \frac{M_B - M_{K$^*}}{M_{K$^*}} A_2 \approx \frac{M_B}{2E_{K$^*}} \, T_2 - T_3 \end{array}$
$\lambda = \Lambda_{ m QCD}/m_b \sim 0.15$

Low hadronic recoil

$$A_{i}^{L,R} \sim C^{L,R} \times f_{i} \qquad \qquad C^{L,R} = (C_{9} \mp C_{10}) + \kappa \frac{2m_{b}^{2}}{\sigma^{2}}C_{7},$$

1 SD-coefficient $C^{L,R}$ and 3 FF's f_i $(i = \perp, \parallel, 0)$

$$f_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} V, \quad f_{\parallel} = \sqrt{2} \left(1 + \hat{M}_{K^*}\right) A_1, \quad f_0 = \frac{(1 - \hat{s} - \hat{M}_{K^*}^2)(1 + \hat{M}_{K^*})^2 A_1 - \hat{\lambda} A_2}{2 \hat{M}_{K^*} (1 + \hat{M}_{K^*}) \sqrt{\hat{s}}}$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

$\lambda = \Lambda_{ m QCD}/m_b \sim 0.15$

Low hadronic recoil

FF symmetry breaking

$$\boldsymbol{A}_{i}^{L,R} \sim \boldsymbol{C}^{L,R} \times \boldsymbol{f}_{i} + \boldsymbol{C}_{7} \times \boldsymbol{\mathcal{O}}\left(\lambda\right)$$

1 SD-coefficient $C^{L,R}$ and 3 FF's f_i $(i = \perp, \parallel, 0)$

$$C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2m_b^2}{q^2}C_7,$$

 $\textit{C}_{7}^{\text{SM}}\approx-0.3,~\textit{C}_{9}^{\text{SM}}\approx4.2,~\textit{C}_{10}^{\text{SM}}\approx-4.2$

$$f_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} V, \quad f_{\parallel} = \sqrt{2} \left(1 + \hat{M}_{K^*}\right) A_1, \quad f_0 = \frac{(1 - \hat{s} - \hat{M}_{K^*}^2)(1 + \hat{M}_{K^*})^2 A_1 - \hat{\lambda} A_2}{2 \hat{M}_{K^*}(1 + \hat{M}_{K^*})\sqrt{\hat{s}}}$$

("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

$\lambda = \Lambda_{ m QCD}/m_b \sim 0.15$

Low hadronic recoil FF symmetry breaking OPE $A_i^{L,R} \sim C^{L,R} \times f_i + C_7 \times \mathcal{O}(\lambda) + \mathcal{O}(\lambda^2),$ $C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2m_b^2}{q^2}C_7,$ 1 SD-coefficient $C^{L,R}$ and 3 FF's f_i $(i = \bot, \parallel, 0)$ $C_7^{SM} \approx -0.3, C_9^{SM} \approx 4.2, C_{10}^{SM} \approx -4.2$ $f_{\bot} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} V,$ $f_{\parallel} = \sqrt{2}(1 + \hat{M}_{K^*})A_1,$ $f_0 = \frac{(1 - \hat{s} - \hat{M}_{K^*}^2)(1 + \hat{M}_{K^*})^2A_1 - \hat{\lambda}A_2}{2\hat{M}_{K^*}(1 + \hat{M}_{K^*})\sqrt{\hat{s}}}$ ("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

$\lambda = \Lambda_{ m QCD}/m_b \sim 0.15$

Low hadronic recoil	\Rightarrow small, apart from possible duality violations
FF symmetry breaking	OPE
$\boldsymbol{A}_{i}^{L,R} \sim \boldsymbol{C}^{L,R} \times \boldsymbol{f}_{i} + \boldsymbol{C}_{7} \times \boldsymbol{\mathcal{O}}\left(\boldsymbol{\lambda}\right) + \boldsymbol{\mathcal{O}}$	$(\lambda^2), \qquad C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2m_b^2}{q^2}C_7,$
1 SD-coefficient $C^{L,R}$ and 3 FF's f_i ($i = \perp, \parallel$	$,0\rangle$ $C_7^{\rm SM} \approx -0.3, \ C_9^{\rm SM} \approx 4.2, \ C_{10}^{\rm SM} \approx -4.2$
$\mathbf{f}_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K*}} \mathbf{V}, \mathbf{f}_{\parallel} = \sqrt{2} (1 + \hat{M}_{K*})$	$A_{1}, f_{0} = \frac{(1 - \hat{s} - \hat{M}_{K^{*}}^{2})(1 + \hat{M}_{K^{*}})^{2}A_{1} - \hat{\lambda}A_{2}}{2\hat{M}_{K^{*}}(1 + \hat{M}_{K^{*}})\sqrt{\hat{s}}}$
	("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])
Lever les les sites et l	

Large hadronic recoil

$$\boldsymbol{A}_{\perp,\parallel}^{L,R} \sim \pm \boldsymbol{C}_{\perp}^{L,R} \times \boldsymbol{\xi}_{\perp} + \mathcal{O}\left(\alpha_{\boldsymbol{s}},\lambda\right),$$

$$A_0^{L,R} \sim C_{\parallel}^{L,R} imes \xi_{\parallel} + \mathcal{O}\left(lpha_{s},\lambda
ight)$$

2 SD-coefficients $\mathcal{C}_{\perp,\,\parallel}^{L,R}$ and 2 FF's $\xi_{\perp,\,\parallel}$

$$C_{\perp}^{L,R} = (C_9 \mp C_{10}) + \frac{2m_b M_B}{q^2} C_7, \qquad C_{\parallel}^{L,R} = (C_9 \mp C_{10}) + \frac{2m_b}{M_B} C_7,$$

$\lambda = \Lambda_{ m QCD}/m_b \sim 0.15$

Low hadronic recoil	\Rightarrow small, apart from possible duality violations
FF symmetry breaking O $A_{i}^{L,R} \sim C^{L,R} \times f_{i} + C_{7} \times \mathcal{O}(\lambda) + \mathcal{O}(\lambda)$	PE λ^2 , $C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2m_b^2}{q^2}C_7,$
1 SD-coefficient $C^{L,R}$ and 3 FF's f_i $(i = \perp, \parallel, 0)$	b) $C_7^{\text{SM}} \approx -0.3, \ C_9^{\text{SM}} \approx 4.2, \ C_{10}^{\text{SM}} \approx -4.2$
$\mathbf{f}_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} \mathbf{V}, \mathbf{f}_{\parallel} = \sqrt{2} \left(1 + \hat{M}_{K^*}\right) \mathbf{A}$	$\mathbf{A}_{1}, \mathbf{f}_{0} = \frac{(1 - \hat{s} - \hat{M}_{K^{*}}^{2})(1 + \hat{M}_{K^{*}})^{2}\mathbf{A}_{1} - \hat{\lambda}\mathbf{A}_{2}}{2\hat{M}_{K^{*}}(1 + \hat{M}_{K^{*}})\sqrt{\hat{s}}}$
	("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])
Large hadronic recoil	\Rightarrow limited, end-point-divergences at $\mathcal{O}(\lambda)$
$A^{L,R}_{L,\mu} \sim \pm C^{L,R}_{L,\lambda} \times \xi_{\perp} \pm \mathcal{O}(\alpha_{s},\lambda)$	AL, B = CL, B = C + O(C + C)
	$A_0^{\dagger} \sim C_{\parallel}^{\dagger} \times \xi_{\parallel} + O(\alpha_s, \lambda)$
2 SD-coefficients $C_{\perp,\parallel}^{L,R}$ and 2 FF's $\xi_{\perp,\parallel}$	$A_0^* \sim C_{\parallel}^* \times \xi_{\parallel} + O(\alpha s, \lambda)$

"Transversity" Observables @ Large Recoil ...

... "designed" from transversity amplitudes

$$A_{\perp,\parallel}^{L,R} \sim \pm C_{\perp}^{L,R} \times \xi_{\perp} + \mathcal{O}\left(\alpha_{s},\lambda\right), \qquad A_{0}^{L,R} \sim C_{\parallel}^{L,R} \times \xi_{\parallel} + \mathcal{O}\left(\alpha_{s},\lambda\right)$$

... in order to have reduced form factor $\xi_{\perp,\parallel}$ uncertainty

$$\begin{split} A_{T}^{(2)} &= \frac{|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2} - |A_{\parallel}^{L}|^{2} - |A_{\parallel}^{R}|^{2}}{|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\parallel}^{R}|^{2}}, \qquad \qquad A_{T}^{(3)} &= \frac{|A_{0}^{L}A_{\parallel}^{L*} + A_{0}^{R*}A_{\parallel}^{R}|}{\sqrt{(|A_{0}^{L}|^{2} + |A_{0}^{R}|^{2})(|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2})}, \\ A_{T}^{(4)} &= \frac{|A_{0}^{L}A_{\perp}^{L*} - A_{0}^{R*}A_{\perp}^{R}|}{|A_{0}^{L*}A_{\parallel}^{L} + A_{0}^{R}A_{\parallel}^{R*}|}, \qquad \qquad A_{T}^{(5)} &= \frac{|A_{0}^{L}A_{\perp}^{R*} + A_{\perp}^{L}A_{\parallel}^{R*}|}{|A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\parallel}^{R}|^{2}}, \\ A_{T}^{(re)} &= \frac{2\operatorname{Re}\left[A_{\parallel}^{L}A_{\perp}^{L*} - A_{\parallel}^{R}A_{\perp}^{R*}\right]}{|A_{\perp}^{L}|^{2} + |A_{\perp}^{R}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\parallel}^{R}|^{2}}, \qquad \qquad A_{T}^{(im)} &= \frac{2\operatorname{Im}\left[A_{\parallel}^{L}A_{\perp}^{L*} + A_{\parallel}^{R}A_{\perp}^{R*}\right]}{|A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\parallel}^{R}|^{2} + |A_{\parallel}^{R}|^{2}} \right] \\ \end{split}$$

[Krüger/Matias hep-ph/0502060, Egede/Hurth/Matias/Ramon/Reece 0807.2589 + 1005.0571, Becirevic/Schneider 1106.3283] ... and extended operator basis in [Matias/Mescia/Ramon/Virto arXiv:1202.4266]

BEACH 2012

C. Bobeth

"Transversity" Observables @ Large Recoil ...

... "designed" from transversity amplitudes

C. Bobeth

$$A_{\perp,\parallel}^{L,R} \sim \pm C_{\perp}^{L,R} \times \xi_{\perp} + \mathcal{O}\left(\alpha_{s},\lambda\right), \qquad A_{0}^{L,R} \sim C_{\parallel}^{L,R} \times \xi_{\parallel} + \mathcal{O}\left(\alpha_{s},\lambda\right)$$

 \ldots in order to have reduced form factor $\xi_{\perp,\parallel}$ uncertainty

$$\begin{split} A_T^{(2)} &= \frac{J_3}{2 J_{2s}}, \qquad \qquad A_T^{(3)} &= \sqrt{\frac{(2 J_4)^2 + J_7^2}{-2 J_{2c} (2 J_{2s} + J_3)}}, \\ A_T^{(4)} &= \sqrt{\frac{J_5^2 + (2 J_8)^2}{(2 J_4)^2 + J_7^2}}, \qquad \qquad A_T^{(5)} &= \frac{\sqrt{16 J_{1s}^2 - 9 J_{6s}^2 - 36 (J_3^2 + J_9^2)}}{8 J_{1s}}, \\ A_T^{(re)} &= \frac{J_{6s}}{4 J_{2s}}, \qquad \qquad A_T^{(im)} &= \frac{J_9}{2 J_{2s}} \end{split}$$

[Krüger/Matias hep-ph/0502060, Egede/Hurth/Matias/Ramon/Reece 0807.2589 + 1005.0571, Becirevic/Schneider 1106.3283] ... and extended operator basis in [Matias/Mescia/Ramon/Virto arXiv:1202.4266]

BEACH 2012	July 26, 2012 16 / 1
------------	----------------------

$$A_{0,\parallel,\perp}^{L,R} \sim C^{L,R} \times f_{0,\parallel,\perp}$$
 with $C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2 m_b^2}{q^2} C_7^{\text{eff}}$

$$A_{0,\parallel,\perp}^{L,R} \sim C^{L,R} \times f_{0,\parallel,\perp}$$
 with $C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2 m_b^2}{q^2} C_7^{\text{eff}}$

$$H_T^{(1)} = \frac{\sqrt{2}J_4}{\sqrt{-J_{2c} \left(2J_{2s} - J_3\right)}} = \operatorname{sgn}(f_0)$$

test OPE framework \rightarrow duality violating contributions

$$A_{0,\parallel,\perp}^{L,R} \sim C^{L,R} \times f_{0,\parallel,\perp}$$
 with $C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2 m_b^2}{q^2} C_7^{\text{eff}}$

$$H_T^{(1)} = \frac{\sqrt{2}J_4}{\sqrt{-J_{2c}\left(2J_{2s} - J_3\right)}} = \operatorname{sgn}(f_0)$$

test OPE framework \rightarrow duality violating contributions

"long-distance free"

$$H_{T}^{(2)} = \frac{J_{5}}{\sqrt{-2J_{2c}\left(2J_{2s}+J_{3}\right)}} \qquad \qquad H_{T}^{(3)} = \frac{J_{6s}/2}{\sqrt{(2J_{2s})^{2}-(J_{3})^{2}}}$$

... and "long-distance free" CP-asymmetries $a_{CP}^{(1,2,3)}$

$$A_{0,\parallel,\perp}^{L,R} \sim C^{L,R} \times f_{0,\parallel,\perp}$$
 with $C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2 m_b^2}{q^2} C_7^{\text{eff}}$

$$H_T^{(1)} = \frac{\sqrt{2}J_4}{\sqrt{-J_{2c}\left(2J_{2s} - J_3\right)}} = \operatorname{sgn}(f_0) \qquad \begin{array}{c} \text{test OPE framework} \to \\ \text{duality violating contributions} \end{array}$$

SD coeff's: $\rho_1 = (|C^R|^2 + |C^L|^2)/2$, $\rho_2 = (|C^R|^2 - |C^L|^2)/4$

$$H_{T}^{(2)} = \frac{J_{5}}{\sqrt{-2J_{2c}\left(2J_{2s}+J_{3}\right)}} \qquad = \qquad H_{T}^{(3)} = \frac{J_{6s}/2}{\sqrt{(2J_{2s})^{2}-(J_{3})^{2}}} \qquad = \qquad 2\frac{\rho_{2}}{\rho_{1}},$$

... and "long-distance free" CP-asymmetries $a_{\rm CP}^{(1,2,3)}$

"long-distance free"

$$A_{0,\parallel,\perp}^{L,R} \sim C^{L,R} \times f_{0,\parallel,\perp}$$
 with $C^{L,R} = (C_9 \mp C_{10}) + \kappa \frac{2 m_b^2}{q^2} C_7^{\text{eff}}$

$$H_T^{(1)} = \frac{\sqrt{2}J_4}{\sqrt{-J_{2c}\left(2J_{2s} - J_3\right)}} = \operatorname{sgn}(f_0) \qquad \begin{array}{c} \text{test OPE framework} \to \\ \text{duality violating contributions} \end{array}$$

SD coeff's: $\rho_1 = (|C^R|^2 + |C^L|^2)/2$, $\rho_2 = (|C^R|^2 - |C^L|^2)/4$

$$H_T^{(2)} = \frac{J_5}{\sqrt{-2J_{2c}\left(2J_{2s}+J_3\right)}} \qquad = \qquad H_T^{(3)} = \frac{J_{6s}/2}{\sqrt{(2J_{2s})^2-(J_3)^2}} \qquad = \qquad 2\frac{\rho_2}{\rho_1},$$

... and "long-distance free" CP-asymmetries $a_{\rm CP}^{(1,2,3)}$

"short-distance free" \rightarrow measure form factors $f_{0,\parallel,\perp}$ (SM-operator basis only)

$$\begin{split} \frac{f_0}{f_{||}} &= \frac{\sqrt{2}J_5}{J_{6s}} = \frac{-J_{2c}}{\sqrt{2}J_4} = \frac{\sqrt{2}J_4}{2J_{2s} - J_3} = \sqrt{\frac{-J_{2c}}{2J_{2s} - J_3}} = \frac{\sqrt{2}J_8}{-J_9},\\ \frac{f_{\perp}}{f_{||}} &= \sqrt{\frac{2J_{2s} + J_3}{2J_{2s} - J_3}} = \frac{\sqrt{-J_{2c}\left(2J_{2s} + J_3\right)}}{\sqrt{2}J_4}, \qquad \qquad \frac{f_0}{f_{\perp}} = \sqrt{\frac{-J_{2c}}{2J_{2s} + J_3}} \end{split}$$

C. Bobeth

"long-distance free"

July 26, 2012 17 / 1

Sensitivity of $H_T^{(2,3)}$ – example: real C_9

Sensitivity of $H_T^{(2,3)}$ – example: real C_9

BEACH 2012

Sensitivity of $H_T^{(2,3)}$ – example: real C_9

BEACH 2012

Towards a global analysis of rare $\Delta B = 1$ decays – Model-independent –

Parameters of interest $\vec{\theta} = (C_i)$

Parameters of interest $\vec{\theta} = (C_i)$

Nuisance parameters

- 1) process-specific
 - FF's, decay const's, LCDA pmr's, sub-leading Λ/m_b ,
- renorm. scales: $\mu_{b,0}$
 - 2) general

 $\vec{\nu}$

quark masses, CKM, ...

Parameters of interest $\vec{\theta} = (C_i)$

Nuisance parameters

- 1) process-specific
 - FF's, decay const's, LCDA pmr's, sub-leading Λ/m_b ,
- renorm. scales: $\mu_{b,0}$
- 2) general

 $\vec{\nu}$

quark masses, CKM, ...

Observables

1) observables

 $O(\vec{\theta},\vec{\nu})$ depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$

2) experimental data for each observable

pdf(O = o)

 \Rightarrow probability distribution of values o

Parameters of interest $\vec{\theta} = (C_i)$

Nuisance parameters1) process-specificFF's, decay const's,
LCDA pmr's,
sub-leading Λ/m_b ,
renorm. scales: $\mu_{b,0}$ 2) general
quark masses, CKM, ...

Observables

1) observables

 $O(\vec{\theta},\vec{\nu})$ depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$

2) experimental data for each observable

pdf(O = o)

 \Rightarrow probability distribution of values *o*

Fit strategies: 1) Put theory uncertainties in likelihood:

- sample $\vec{\theta}$ -space (grid, Markov Chain, importance sampling...)
- theory uncertainties of O_i at each $(\vec{\theta})_i$: vary $\vec{\nu}$ within some ranges $\Rightarrow \sigma_{\text{th}}(O[(\vec{\theta})_i])$
- use Frequentist or Bayesian method \Rightarrow 68 & 95 % (CL or probability) regions of $\vec{\theta}$

 $\chi^{2} = \sum \frac{(O_{\rm ex} - O_{\rm th})^{2}}{\sigma_{\rm ex}^{2} + \sigma_{\rm c}^{2}}$

Parameters of interest $\vec{\theta} = (C_i)$

Nuisance parameters1) process-specificFF's, decay const's,
LCDA pmr's,
sub-leading Λ/m_b ,
renorm. scales: $\mu_{b,0}$ 2) general
quark masses, CKM, ...

Observables

1) observables

 $O(\vec{\theta},\vec{\nu})$ depend usually on sub-set of $\vec{\theta}$ and $\vec{\nu}$

2) experimental data for each observable

pdf(O = o)

 \Rightarrow probability distribution of values *o*

Fit strategies: 2) Fit also nuisance parameters:

- sample $(\vec{\theta} \times \vec{\nu})$ -space (grid, Markov Chain, importance sampling...)
- accounts for theory uncertainties by fitting also $(\vec{\nu})_i$
- use Frequentist or Bayesian method \Rightarrow 68 & 95% (CL or probability) regions of $\vec{\theta}$ and $\vec{\nu}$

Strategy 1)

- \Rightarrow Model-independent analysis with different sets of operators
- \Rightarrow Using inclusive and exclusive $b \rightarrow s + (\gamma, \ell^+ \ell^-)$ data

٩	Descotes-Genon/Ghosh/Matias/Ramon	arXiv:1104.3342
٩	CB/Hiller/van Dyk	arXiv:1105.0376
٩	Altmannshofer/Paradisi/Straub	arXiv:1111.1257
٩	CB/Hiller/van Dyk/Wacker	arXiv:1111.2558
٩	Becirevic/Kosnik/Mescia/Schneider	arXiv:1205.5811
٩	Altmannshofer/Straub	arXiv:1206.0273
۲	Becirevic/Kou/Le Yaounac/Tayduganov	arXiv:1206.1502
٩	Hurth/Mahmoudi	arXiv:1207.0688
۲	Descotes-Genon/Matias/Ramon/Virto	arXiv:1207.2753

BEACH 2012

Strategy 2) Beaujean/CB/van Dyk/Wacker arXiv:1205.1838

- theory uncertainties = nuisance parameters ⇒ include them in the fit and profit from "short-distance" free observables @ low recoil = 'fitting form factors"
- use Bayes theorem = Bayesian inference
- based on Population MC (PMC) [Cappé et al. arXiv:0710.4242; Kilbinger et al. arXiv:0912.1614, 1101.0950]
 1) to avoid problems of Markov chains in presence of multi-modal posterior
 2) allows for parallelized evaluation of likelihood
- Flavour tool "EOS": observables for

http://project.het.physik.tu-dortmund.de/eos/

 $B \to K^* \gamma, \quad B \to K \ell^+ \ell^-, \quad B \to K^* \ell^+ \ell^-, \quad B_s \to \mu^+ \mu^-$

Strategy 2) Beaujean/CB/van Dyk/Wacker arXiv:1205.1838

- theory uncertainties = nuisance parameters ⇒ include them in the fit and profit from "short-distance" free observables @ low recoil = 'fitting form factors"
- use Bayes theorem = Bayesian inference
- based on Population MC (PMC) [Cappé et al. arXiv:0710.4242; Kilbinger et al. arXiv:0912.1614, 1101.0950]
 1) to avoid problems of Markov chains in presence of multi-modal posterior
 2) allows for parallelized evaluation of likelihood
- Flavour tool "EOS": observables for

 $B \to K^* \gamma, \quad B \to K \ell^+ \ell^-, \quad B \to K^* \ell^+ \ell^-, \quad B_s \to \mu^+ \mu^-$

Bayes Theorem – update knowledge given some data *D* and a model *M*

 $P\left(\vec{\theta}, \vec{\nu} \mid D, M\right) = \frac{P\left(D, M \mid \vec{\theta}, \vec{\nu}\right) P\left(M \mid \vec{\theta}, \vec{\nu}\right)}{Z}$

- P (M | θ, v): probability of pmr's (θ, v) in model M (prior = the "subjective" part)
- P (D, M | θ, ν): likelihood of the data D in model M given the pmr's (θ, ν)
- Normalisation factor: Z = evidence

$$Z = \int \! \mathrm{d}\vec{\theta} \, \mathrm{d}\vec{v} \, P\left(D, M \,|\, \vec{\theta}, \vec{v}\right) P\left(M \,|\, \vec{\theta}, \vec{v}\right)$$

 \Rightarrow allows model comparison among $M_1, M_2 \dots$

http://project.het.physik.tu-dortmund.de/eos/

Strategy 2) Beaujean/CB/van Dyk/Wacker arXiv:1205.1838

- theory uncertainties = nuisance parameters ⇒ include them in the fit and profit from "short-distance" free observables @ low recoil = 'fitting form factors"
- use Bayes theorem = Bayesian inference
- based on Population MC (PMC) [Cappé et al. arXiv:0710.4242; Kilbinger et al. arXiv:0912.1614, 1101.0950]
 1) to avoid problems of Markov chains in presence of multi-modal posterior
 2) allows for parallelized evaluation of likelihood
- Flavour tool "EOS": observables for

http://project.het.physik.tu-dortmund.de/eos/

 $B \to K^* \gamma, \quad B \to K \ell^+ \ell^-, \quad B \to K^* \ell^+ \ell^-, \quad B_s \to \mu^+ \mu^-$

Priors

- 1) flat priors for Wilson coefficients
- 2) gaussian (symmetric) / LogGamma (asymmetric) priors for
 - CKM and quark-mass input
 - form factor results from LCSR at low- q^2 , only extrapolation to high- q^2

[Ball/Zwicky hep-ph/0412079, Khodjamirian et al. arXiv:1006.4945]

- parametrization of lacking sub-leading contributions @ low- and high-q²
- \Rightarrow about $\mathcal{O}(30)$ nuisance parameters
- ⇒ test prior dependence

C. Bobeth

BEACH 2012

Parameters of interest $C_i(4.2 \text{ GeV})$ - 2D marginalised posterior

 \rightarrow individual constraints at 95 % CR from

 $B \to K^* \gamma$ and

Parameters of interest $C_i(4.2 \,\text{GeV})$ -2D marginalised posterior

15

15 Parameters of interest $C_i(4.2 \,\text{GeV})$ -10 2D marginalised posterior → individual constraints at 95 % CR from $B \rightarrow K^* \gamma$ lo+hi- $q^2 B \rightarrow K \bar{\ell} \ell$ and ů 0 $lo - q^2 B \rightarrow K^* \overline{\ell} \ell$ -5hi- $q^2 B \rightarrow K^* \overline{\ell} \ell$ -10-1510 10 55 \overline{c}^{0} C_{10} 0 0 -5-5-10-10-15-1010 15 -1.0-0.5 $\begin{array}{c} 0.0 \\ C_7 \end{array}$ 0.5 $\begin{array}{c} 0 \\ \mathcal{C}_9 \end{array}$ 51.0 C. Bobeth **BEACH 2012** July 26, 2012 23/1

Parameters of interest $C_i(4.2 \text{ GeV})$ - 2D marginalised posterior

 \rightarrow individual constraints at 95 % CR from

 $B \to K^* \gamma$ and $lo+hi-q^2 B \to K \overline{\ell} \ell$ $lo-q^2 B \to K^* \overline{\ell} \ell$ $hi-q^2 B \to K^* \overline{\ell} \ell$

all constraints (+ $B_s \rightarrow \bar{\mu}\mu$): 68 % (95 %) CR

$$SM = (\bullet)$$

1.0

Prior dependence

 $SM = (\bullet)$, best fit point = (×)

95 % (dashed) and 68 % (solid) credibility regions using $3 \times$ larger prior ranges

⇒ fit still converges

C. Bobeth	BEACH 2012	July 26, 2012	24 / 1

Pull values of experimental observables

22 observables with 59 measurements

$$\delta = \frac{\textit{X}_{\textit{pred}}(\vec{\theta}, \vec{\nu}) - \textit{X}}{\sigma}$$

C. Bobeth

BEACH 2012

July 26, 2012 25 / 1

Prediction of yet unmeasured optimized observables @ low- q^2

 \Rightarrow Measurements outside these predictions would put simple scenario $C_{7,9,10}$ in trouble

C. Bobeth

Nuisance parameter – example $B \rightarrow K$ form factor $f_+(q^2)$

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - q^{2}/M_{\text{res},+}^{2}} \left[1 + b_{1}^{+} \left(z(q^{2}) - z(0) + \frac{1}{2} \left[z(q^{2})^{2} - z(0)^{2} \right] \right) \right],$$

$$z(s) = \frac{\sqrt{\tau_{+} - s} - \sqrt{\tau_{+} - \tau_{0}}}{\sqrt{\tau_{+} - s} - \sqrt{\tau_{+} - \tau_{0}}}, \qquad \tau_{0} = \sqrt{\tau_{+}} \left(\sqrt{\tau_{+}} - \sqrt{\tau_{+} - \tau_{-}} \right), \qquad \tau_{\pm} = (M_{B} \pm M_{K})^{2}$$

$$0.30 \qquad 0.35 \qquad 0.40 \qquad 0.45 \qquad 0.45 \qquad 0.45 \qquad 0.41 \qquad 0.45 \qquad 0.41 \qquad$$

⇒ Prior [dotted] from LCSR calculation [Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945]

 \Rightarrow Posterior of $f_+(0)$ [left] and b^1_+ [right] using

1) $B \rightarrow K \ell^+ \ell^-$ data only [dashed] vs 2) all data [solid, red]

C. Bobeth

Summary

- rare $b \to s + (\gamma, \ell^+ \ell^-)$ are suppressed in the SM \to indirect search of New Physics
 - provide strong constraints on generic extensions of flavour sector
- new b → s + (γ, ℓ⁺ℓ⁻) data from 2nd generation exp's: LHCb, Belle II and SuperB with high statistics through next decade
- angular observables J_i in exclusive B → K*(→ Kπ)ℓℓ provide
 @ low- and high-q² combinations with small hadronic uncertainties
- SM test and BSM search require extension of CKM-fit strategy:

global analysis: "combine all data and constrain scenarios"

EOS = new Flavour tool @ TU Dortmund by Danny van Dyk et al. Download @ http://project.het.physik.tu-dortmund.de/eos/

Upcoming Workshop in September 10 – 11, 2012 @ University of Sussex, Brighton, UK https://indico.cern.ch/conferenceDisplay.py?ovw=True&confId=198173

- Backup Slides -
So far theorists neglected mixing of $B_s \Rightarrow$ predict Br at t = 0: $Br[B_s(t = 0) \rightarrow \bar{\mu}\mu]$

So far theorists neglected mixing of $B_s \Rightarrow$ predict Br at t = 0: $Br[B_s(t = 0) \rightarrow \bar{\mu}\mu]$

But with new measurements of $\Delta\Gamma_s$ (incl. sign) from LHCb and CDF, DØ

 \Rightarrow experiments actually measure time-integrated Br:

[De Bruyn et al. arXiv:1204.1737]

with

So far theorists neglected mixing of $B_s \Rightarrow$ predict Br at t = 0: $Br[B_s(t = 0) \rightarrow \bar{\mu}\mu]$

But with new measurements of $\Delta\Gamma_s$ (incl. sign) from LHCb and CDF, DØ

 \Rightarrow experiments actually measure time-integrated Br:

[De Bruyn et al. arXiv:1204.1737]

$$Br[B_s \to \bar{\mu}\mu] \equiv \frac{1}{2} \int_0^\infty dt \left(\Gamma[B_s(t) \to \bar{\mu}\mu] + \Gamma[\bar{B}_s(t) \to \bar{\mu}\mu] \right)$$
$$= \frac{1 + y_s \cdot \mathcal{A}_{\Delta\Gamma}}{1 - y_s^2} Br[B_s(t=0) \to \bar{\mu}\mu]$$
$$h (LHCb '11) \qquad \text{and}$$
$$y_s = \frac{\Delta\Gamma_s}{2\Gamma_s} = 0.088 \pm 0.014 \qquad \Rightarrow \text{ in SM} \quad \mathcal{A}_{\Delta\Gamma}|_{SM} = +1$$
$$\Rightarrow \text{ beyond } \mathcal{A}_{\Delta\Gamma} \in [-1, +1] \to \text{ depends on NP !!!}$$

In SM for example

wit

largest uncertainties from

f_{Bs}

$$Br[B_s \to \bar{\mu}\mu]_{\rm SM} = (3.53 \pm 0.38) \times 10^{-9}$$

[Mahmoudi/Neshatpour/Orloff arXiv:1205.1845]

$$= (234 \pm 10) \text{ MeV} \rightarrow 9 \%$$
$$V_{ts} \rightarrow 5 \%$$
$$B_s \text{ lifetime} \rightarrow 2 \%$$

So far theorists neglected mixing of $B_s \Rightarrow$ predict Br at t = 0: $Br[B_s(t = 0) \rightarrow \bar{\mu}\mu]$

But with new measurements of $\Delta\Gamma_s$ (incl. sign) from LHCb and CDF, DØ

 \Rightarrow experiments actually measure time-integrated Br:

[De Bruyn et al. arXiv:1204.1737]

$$Br[B_s \to \bar{\mu}\mu] \equiv \frac{1}{2} \int_0^\infty dt \left(\Gamma[B_s(t) \to \bar{\mu}\mu] + \Gamma[\bar{B}_s(t) \to \bar{\mu}\mu] \right)$$
$$= \frac{1 + y_s \cdot A_{\Delta\Gamma}}{1 - y_s^2} Br[B_s(t=0) \to \bar{\mu}\mu]$$
with (LHCb '11) and
$$y_s = \frac{\Delta\Gamma_s}{2\Gamma_s} = 0.088 \pm 0.014 \qquad \Rightarrow \text{ in SM} \quad A_{\Delta\Gamma}|_{SM} = +1$$
$$\Rightarrow \text{ beyond } A_{\Delta\Gamma} \in [-1, +1] \to \text{ depends on NP !!!}$$

... or using precise ΔM_s measurement to substitute f_{B_s} (and assuming SM) [Buras hep-ph/0303060]

$$Br[B_{\rm S} \to \bar{\mu}\mu]_{\rm SM} = \frac{(3.1 \pm 0.2) \times 10^{-9}}{0.91 \pm 0.01} = (3.4 \pm 0.2) \times 10^{-9}$$

[Buras/Girrbach arXiv:1204.5064]

BEACH 2012	July 26, 2012	30 / 1
------------	---------------	--------

C. Bobeth

Goodness of fit & Bayes factor

$sgn(C_7, C_9, C_{10})$	best-fit-point log(MAP)	log(MAP)	goodness-of-fit				$\log(Z)$
		T _{like}	$p_{\rm like}$	T_{pull}	$p_{ m pull}$	109(2)	
(-, +, -)	(-0.295, 3.73, -4.14)	424.31	402.40	59%	48.8	74%	385.1
(+, -, +)	(0.418, -4.64, 3.99)	424.20	402.32	58%	48.9	74%	385.0
(-, -, +)	(-0.392, -3.09, 3.19)	403.72	387.70	0.8%	76.8	3%	363.8
(+, +, -)	(0.557, 2.25, -3.24)	399.70	384.66	0.2%	82.9	1%	360.1
SM: (-, +, -)	(-0.327, 4.28, -4.15)	430.56 [†]	402.30	69%	49.0	82%	392.4

MAP = maximum a posteriori

Z = local evidence = $\int d\vec{\theta} d\vec{\nu} P(D|\theta, \nu) \cdot P(\theta, \nu) =$ "likelihood × prior"

 \Rightarrow 2 methods to derive *p*-values from 2 statistics T_{like} and T_{pull} :

indicate good fit: $p \sim (60 - 75)\%$

⇒ model comparison: SM = fixed values of Wilson coefficients ⇔ SM-like solution

Bayes factor: $B = \exp(392.4 - 385.1) \approx 1500$ in favor of the simpler model

update in Altmannshofer/Straub arXiv:1206.0273

- \Rightarrow based on MCMC + Bayesian inference
- \Rightarrow included data from
 - $B \rightarrow X_s \gamma : Br, A_{CP},$ $B \rightarrow K^* \gamma : S$
 - $B \rightarrow X_s \overline{\ell}\ell$: Br, $B \rightarrow K \overline{\ell}\ell$: Br, $B \rightarrow K^* \overline{\ell}\ell$: Br, A_{FB} , F_L , S_3 , A_{im} , $B_s \rightarrow \overline{\mu}\mu$: Br

update in Altmannshofer/Straub arXiv:1206.0273

- \Rightarrow based on MCMC + Bayesian inference
- \Rightarrow included data from
 - $B \rightarrow X_s \gamma : Br, A_{CP}, B \rightarrow K^* \gamma : S$ • $B \rightarrow X_s \bar{\ell}\ell : Br, B \rightarrow K \bar{\ell}\ell : Br, B \rightarrow K^* \bar{\ell}\ell : Br, A_{FB}, F_L, S_3, A_{im}, B_s \rightarrow \bar{\mu}\mu : Br$

 \Rightarrow model-indep. NP (real or complex)

- C_{7,7', 9,9', 10,10'} (in varying stages)
- Z-penguin + $C_{7,7'}$ \Rightarrow relates $b \rightarrow s \bar{\ell} \ell$ and $b \rightarrow s \bar{\nu} \nu$

•
$$(C_S - C_{S'}), (C_P - C_{P'})$$

update in

Altmannshofer/Straub arXiv:1206.0273

 \Rightarrow individual constraints at 95 %

 $S[B \rightarrow K^* \gamma]$ $Br[B \rightarrow X_s \gamma]$ $lo+hi-q^2 Br[B \rightarrow X_s \bar{\ell}\ell]$ $lo - q^2 B \rightarrow K^* \overline{\ell} \ell$ hi- $q^2 B \to K^* \overline{\ell} \ell$

combined constraints: 68 % (95 %)

here in 2 parameter scenarios from arXiv:1111.1257 \Rightarrow

C. Bobeth

BEACH 2012

update in

Altmannshofer/Straub arXiv:1206.0273

 \Rightarrow predictions of unmeasured observables

 still large T-odd CP-asymmetries at low-q²:

$$\begin{split} |\langle A_7 \rangle_{[1,6]}| &< 35 \,\% \\ |\langle A_8 \rangle_{[1,6]}| &< 21 \,\% \\ |\langle A_9 \rangle_{[1,6]}| &< 13 \,\% \end{split}$$

at high-q2:

$$\begin{split} |\langle A_8 \rangle_{[14,16]}| < 12\,\% \\ |\langle A_9 \rangle_{[14,16]}| < 20\,\% \end{split}$$

C. Bobeth

 Strategy 1)
 Altmannshofer/Paradisi/Straub arXiv:1111.1257
 Similar analysis

 update in
 Altmannshofer/Straub arXiv:1206.0273
 Descotes-Genon/Ghosh/Matias/Ramon arXiv:1104.3342

 CB/Hiller/van Dyk arXiv:1105.0376
 CB/Hiller/van Dyk

- CB/Hiller/van Dyk/Wacker arXiv:1111.2558
- Becirevic/Kosnik/Mescia/Schneider arXiv:1205.5811
- Becirevic/Kou/Le Yaounac/Tayduganov arXiv:1206.1502
- Hurth/Mahmoudi arXiv:1207.0688
- Descotes-Genon/Matias/Ramon/Virto arXiv:1207.2753

Ο ...

Data for $B \to K^* + \ell^+ \ell^-$: data in 6 q²-bins for $\langle Br \rangle$, $\langle A_{FB} \rangle$, $\langle F_L \rangle$

angular analysis in each q^2 -bin in θ_ℓ , θ_K

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_K} = \frac{3}{2} F_L \cos^2\theta_K + \frac{3}{4} (1 - F_L) \sin^2\theta_K$$

$$\frac{1}{\Gamma}\frac{\mathrm{dl}}{\mathrm{dcos}\,\theta_{\ell}} = \frac{3}{4}F_{L}\,\mathrm{sin}^{2}\theta_{\ell} + \frac{3}{8}(1-F_{L})(1+\mathrm{cos}^{2}\theta_{\ell}) + A_{\mathrm{FB}}\,\mathrm{cos}\theta_{\ell}$$

 \Rightarrow fitted $\textit{F}_{\textit{L}}$ and $\textit{A}_{\rm FB}$

Data for $B \to K^* + \ell^+ \ell^-$: data in 6 q^2 -bins for $\langle Br \rangle$, $\langle A_{FB} \rangle$, $\langle F_L \rangle$

C. Bobeth

BEACH 2012

July 26, 2012 33 / 1

Data for $B \to K^* + \ell^+ \ell^-$: data in 6 q^2 -bins for

additional measurement of S_3 (or $A_T^{(2)}$) and A_{im} from CDF and LHCb

$$\frac{2\pi}{(\Gamma+\bar{\Gamma})}\frac{\mathsf{d}(\Gamma+\bar{\Gamma})}{\mathsf{d}\phi} = 1 + S_3 \cos 2\phi + A_{im} \sin 2\phi$$

 $\langle S_3 \rangle, \langle A_{im} \rangle$

with

$$S_3 = \frac{J_3 + \overline{J}_3}{\Gamma + \overline{\Gamma}} = \frac{1}{2} (1 - F_L) A_T^{(2)}, \qquad A_{im} = \frac{J_9 - \overline{J}_9}{\Gamma + \overline{\Gamma}}$$

(since J_9 CP-odd, the CP-asymmetry $\sim (J_9 - \overline{J}_9)$ from untagged *B*-sample)

Data for $B \rightarrow K^* + \ell^+ \ell^-$:

Zero-crossing of $A_{\rm FB}$ in low- q^2 region:

[LHCb Collaboration LHCb-CONF-2012-008]

finer q^2 -binning than previously: bin-width = 1 GeV²

C. Bobeth

$$\frac{1}{(d\Gamma/dq^2)} \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell}} = \frac{3}{4} [1 - F_H] \sin^2\theta_{\ell} + \frac{1}{2} F_H + A_{FB} \cos\theta_{\ell}$$
3 observables × CP-conj: dBr/dq^2 , $A_{FB}(q^2)$, $F_H(q^2)$

$$\frac{1}{(d\Gamma/dq^2)} \frac{d^2\Gamma}{dq^2 \, d\cos \theta_\ell} = \frac{3}{4} \left[1 - F_H \right] \sin^2 \theta_\ell + \frac{1}{2} F_H + A_{\rm FB} \cos \theta_\ell$$
3 observables × CP-conj: dBr/dq^2 , $A_{\rm FB}(q^2)$, $F_H(q^2)$

C. Bobeth

BEACH 2012

July 26, 2012 34 / 1

$$\frac{1}{(d\Gamma/dq^2)} \frac{d^2\Gamma}{dq^2 d\cos\theta_{\ell}} = \frac{3}{4} \left[1 - F_H \right] \sin^2\theta_{\ell} + \frac{1}{2} F_H + A_{FB} \cos\theta_{\ell}$$

3 observables × CP-conj: dBr/dq^2 , $A_{FB}(q^2)$, $F_H(q^2)$

also measured:

- 6 q^2 -bins lepton forward-backward asymmetry: $\langle A_{FB} \rangle$
- 6 *q*²-bins isospin asymmetry:

$$\langle \mathbf{A}_{l} \rangle = \frac{(\tau_{B^{\pm}}/\tau_{B^{0}}) \langle Br[B^{0} \to K^{0}\bar{\ell}\ell] \rangle - \langle Br[B^{\pm} \to K^{\pm}\bar{\ell}\ell] \rangle}{(\tau_{B^{\pm}}/\tau_{B^{0}}) \langle Br[B^{0} \to K^{0}\bar{\ell}\ell] \rangle - \langle Br[B^{\pm} \to K^{\pm}\bar{\ell}\ell] \rangle}$$

$$\frac{1}{(d\Gamma/dq^2)} \frac{d^2\Gamma}{dq^2 \, d\cos \theta_\ell} = \frac{3}{4} \left[1 - F_H \right] \sin^2 \theta_\ell + \frac{1}{2} F_H + A_{FB} \cos \theta_\ell$$

3 observables × CP-conj: dBr/dq^2 , $A_{FB}(q^2)$, $F_H(q^2)$

also measured:

- 6 q^2 -bins lepton forward-backward asymmetry: $\langle A_{\rm FB} \rangle$
- 6 *q*²-bins isospin asymmetry:

$$\langle \mathbf{A}_{l} \rangle = \frac{(\tau_{\mathbf{B}^{\pm}}/\tau_{\mathbf{B}^{0}}) \langle \mathbf{B}\mathbf{r}[\mathbf{B}^{0} \to \mathbf{K}^{0}\bar{\ell}\ell] \rangle - \langle \mathbf{B}\mathbf{r}[\mathbf{B}^{\pm} \to \mathbf{K}^{\pm}\bar{\ell}\ell] \rangle}{(\tau_{\mathbf{B}^{\pm}}/\tau_{\mathbf{B}^{0}}) \langle \mathbf{B}\mathbf{r}[\mathbf{B}^{0} \to \mathbf{K}^{0}\bar{\ell}\ell] \rangle - \langle \mathbf{B}\mathbf{r}[\mathbf{B}^{\pm} \to \mathbf{K}^{\pm}\bar{\ell}\ell] \rangle}$$

- ... and improved measurements of
 - exclusive $b \to s \gamma$: $B \to K^* \gamma$, $B_s \to \phi \gamma$ (LHCb)
 - leptonic $B_s \rightarrow \mu^+ \mu^-$ and related (LHCb, CMS, ATLAS)
 - inclusive $b \to s\gamma$ and $b \to s\ell^+\ell^-$ (Belle II, SuperB)

q²-Integrated Observables

Experimental measurements of observables P always imply binning in kinematical variables x, i.e.

$$\langle P \rangle_{[x_{min}, x_{max}]} \equiv \int_{x_{min}}^{x_{max}} \mathrm{d}x P(x)$$

Assume, that angular observables $J_i(q^2)$ are measured in experiment for certain q^2 binning (omitting q^2 -interval boundaries)

$$\langle J_i \rangle = \int_{q^2_{min}}^{q^2_{max}} \mathrm{d}q^2 \, J_i(q^2)$$

and "transversity observables" are then determined as follows (for example)

$$\left\langle \mathbf{A}_{7}^{(3)} \right\rangle = \sqrt{\frac{4 \left\langle \mathbf{J}_{4} \right\rangle^{2} + \left\langle \mathbf{J}_{7} \right\rangle^{2}}{-2 \left\langle \mathbf{J}_{2c} \right\rangle \left\langle 2\mathbf{J}_{2s} + \mathbf{J}_{3} \right\rangle}}$$

 \longrightarrow This has to accounted for in theoretical predictions !!!

~	D I II	
C.	Bobeth	

BEACH 2012

July 26, 2012 35 / 1

Measuring Angular Observables

likely that exp. results only in some q^2 -integrated bins: $\langle \dots \rangle = \int_{q_{min}^2}^{q_{max}^2} dq^2 \dots$, then use some (quasi-) single-diff. distributions in θ_ℓ , θ_{K^*} , ϕ

$$\frac{\mathsf{d}\langle \mathsf{\Gamma}\rangle}{\mathsf{d}\phi} = \frac{1}{2\pi} \left\{ \langle \mathsf{\Gamma}\rangle + \langle \mathsf{J}_3\rangle \cos 2\phi + \langle \mathsf{J}_9\rangle \sin 2\phi \right\}$$

• 2 bins in $\cos \theta_{K^*}$

$$\frac{d\langle A_{\theta_{K^*}}\rangle}{d\phi} \equiv \int_{-1}^{1} d\cos\theta_{\ell} \left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{K^*} \frac{d^3\langle\Gamma\rangle}{d\cos\theta_{K^*} d\cos\theta_{\ell} d\phi}$$
$$= \frac{3}{16} \left\{\langle J_5 \rangle \cos\phi + \langle J_7 \rangle \sin\phi\right\}$$

• (2 bins in $\cos \theta_{K^*}$) + (2 bins in $\cos \theta_{\ell}$)

$$\frac{\mathrm{d}\langle A_{\theta_{K^{\ast}},\theta_{\ell}}\rangle}{\mathrm{d}\phi} \equiv \left[\int_{0}^{1} - \int_{-1}^{0}\right] \mathrm{d}\cos\theta_{\ell} \frac{\mathrm{d}^{2}\langle A_{\theta_{K^{\ast}}}\rangle}{\mathrm{d}\cos\theta_{\ell} \,\mathrm{d}\phi} = \frac{1}{2\pi} \left\{\langle J_{4}\rangle\cos\phi + \langle J_{8}\rangle\sin\phi\right\}$$

Low- q^2 = Large Recoil

QCD Factorisation (QCDF)

= (large recoil + heavy quark) limit [also Soft Collinear ET (SCET)] $\left\langle \bar{\ell}\ell \, K_a^* \left| \, H_{\rm eff}^{(l)} \, \right| B \right\rangle \sim$

$$C_a^{(i)} \times \xi_a + \phi_B \otimes T_a^{(i)} \otimes \phi_{a,K*} + \mathcal{O}(\Lambda_{\text{QCD}}/m_b)$$

$$C_a^{(i)}, T_a^{(i)}$$
: perturbative kernels in α_s ($a = \perp, \parallel, i = u, t$

 ϕ_B , $\phi_{a,K*}$: B- and K_a^* -distribution amplitudes

[Beneke/Feldmann/Seidel hep-ph/0106067, hep-ph/0412400]

cc-contributions

[Khodjamirian/Mannel/Pivovarov/Wang arXiv:1006.4945]

- OPE near light-cone incl. soft-gluon emission (non-local operator) for q² ≤ 4 GeV² ≪ 4m²_c
 hadronic dispersion relation using measured B → K^(*)(c̄c) amplitudes at q² ≥ 4 GeV²
- $B \to K^{(*)}$ form factors from LCSR
 - up to (15-20) % in rate for $1 < q^2 < 6 \text{ GeV}^2$

High- q^2 = Low Recoil

Hard momentum transfer $(q^2 \sim M_B^2)$ through $(\bar{q}q) \rightarrow \bar{\ell}\ell$ allows local OPE

$$\mathcal{M}[\bar{B} \to \bar{K}^* + \bar{\ell}\ell] \sim \frac{8\pi^2}{q^2} i \int d^4x \, e^{iq \cdot x} \langle \bar{K}^* | T\{\mathcal{L}^{\text{eff}}(0), j^{\text{em}}_{\mu}(x)\} | \bar{B} \rangle [\bar{\ell}\gamma^{\mu}\ell]$$
$$= \left(\sum_a \mathcal{C}_{3a} \mathcal{Q}^{\mu}_{3a} + \sum_b \mathcal{C}_{5b} \mathcal{Q}^{\mu}_{5b} + \sum_c \mathcal{C}_{6c} \mathcal{Q}^{\mu}_{6c} + \mathcal{O}(\dim > 6) \right) [\bar{\ell}\gamma_{\mu}\ell]$$

Buchalla/Isidori hep-ph/9801456, Grinstein/Pirjol hep-ph/0404250, Beylich/Buchalla/Feldmann arXiv:1101.5118

Leading dim = 3 operators: $\langle \bar{K}^* | Q_{3,a} | \bar{B} \rangle \sim \text{usual } B \rightarrow K^*$ form factors $V, A_{0,1,2}, T_{1,2,3}$

$$\begin{aligned} \mathcal{Q}_{3,1}^{\mu} &= \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}\right) \left[\bar{s}\gamma_{\nu}(1-\gamma_5) b\right] & \to & C_9 \to C_9^{\text{eff}}, \qquad (V, A_{1,2}) \\ \mathcal{Q}_{3,2}^{\mu} &= \frac{im_b}{q^2} q_{\nu} \left[\bar{s}\sigma_{\nu\mu}(1+\gamma_5) b\right] & \to & C_7 \to C_7^{\text{eff}}, \qquad (T_{1,2,3}) \end{aligned}$$

C. Bobeth

High- q^2 = Low Recoil

- $dim = 3 \alpha_s$ matching corrections are also known
- $m_s \neq 0$ 2 additional dim = 3 operators, suppressed with $\alpha_s m_s/m_b \sim 0.5$ %, NO new form factors
- dim = 4 absent
- dim = 5 suppressed by $(\Lambda_{\rm QCD}/m_b)^2 \sim 2$ %, explicite estimate @ $q^2 = 15$ GeV²: < 1%
- dim = 6 suppressed by $(\Lambda_{QCD}/m_b)^3 \sim 0.2$ % and small QCD-penguin's: $C_{3,4,5,6}$ spectator quark effects: from weak annihilation
- beyond OPE duality violating effects
 - based on Shifman model for c-quark correlator + fit to recent BES data
 - ±2 % for integrated rate q² > 15 GeV²

 \Rightarrow OPE of exclusive $B \rightarrow K^{(*)} \ell^+ \ell^-$ predicts small sub-leading contributions !!!

BUT, still missing $B \rightarrow K^{(*)}$ form factors @ high- q^2

for predictions of angular observables J_i

High- q^2 : OPE + HQET

Framework developed by Grinstein/Pirjol hep-ph/0404250

1) OPE in $\Lambda_{\rm QCD}/Q$ with $Q = \{m_b, \sqrt{q^2}\}$ + matching on HQET + expansion in m_c

$\mathcal{M}[\bar{B} \to \bar{K}^* + \bar{\ell}\ell] \sim \frac{8\pi}{q^2} \sum_{i=1}^6 \mathcal{C}_i(\mu) \mathcal{T}_{\alpha}^{(i)}(q^2, \mu) [\bar{\ell}\gamma^{\alpha}\ell]$	
$\begin{aligned} \mathcal{T}_{\alpha}^{(i)}(\boldsymbol{q}^{2},\boldsymbol{\mu}) &= i \int \boldsymbol{d}^{4} x \boldsymbol{e}^{i\boldsymbol{q}\cdot\boldsymbol{x}} \langle \bar{K}^{*} T\{\mathcal{O}_{i}(0), j_{\alpha}^{\text{em}}(\boldsymbol{x})\} \bar{B} \rangle \\ &= \sum_{k \geqslant -2} \sum_{j} C_{i,j}^{(k)} \langle \mathcal{Q}_{j,\alpha}^{(k)} \rangle \end{aligned}$	

$\mathcal{Q}_{j,lpha}^{(k)}$	power	$\mathcal{O}(\alpha_{s})$
$Q_{1,2}^{(-2)}$	1	$\alpha_{s}^{0}(Q)$
$\mathcal{Q}_{1-5}^{(-1)}$	$\Lambda_{ m QCD}/Q$	$\alpha_{s}^{1}(Q)$
$Q_{1,2}^{(0)}$	m_c^2/Q^2	$\alpha_{s}^{0}(Q)$
$\mathcal{Q}_{j>3}^{(0)}$	$\Lambda_{ m QCD}^2/Q^2$	$\alpha^{\rm O}_{\rm S}({\it Q})$
$\mathcal{Q}_i^{(2)}$	m_c^4/Q^4	$\alpha^{\rm O}_{\rm S}({\it Q})$
included		

unc. estimate by naive pwr cont.

2) HQET FF-relations at sub-leading order + α_s corrections in leading order

$$\begin{split} T_1(q^2) &= \kappa \, V(q^2), \qquad T_2(q^2) = \kappa \, A_1(q^2), \qquad T_3(q^2) = \kappa \, A_2(q^2) \frac{M_B}{q^2}, \\ \kappa &= \left(1 + \frac{2D_0^{(\nu)}(\mu)}{C_0^{(\nu)}(\mu)}\right) \frac{m_b(\mu)}{M_B} \end{split}$$

can express everything in terms of QCD FF's V, $A_{1,2} \oslash O(\alpha_s \Lambda_{QCD}/Q) \parallel !!$

12

High- q^2 : OPE + HQET – Transversity Amplitudes

$$A_{\perp}^{L,R} = + \left[\mathbf{C}^{L,R} + \tilde{\mathbf{r}}_{a} \right] \mathbf{f}_{\perp} , \qquad \qquad A_{\parallel}^{L,R} = - \left[\mathbf{C}^{L,R} + \tilde{\mathbf{r}}_{b} \right] \mathbf{f}_{\parallel} ,$$

$$A_{0}^{L,R} = -\frac{C^{L,R}}{f_{0}} - NM_{B} \frac{(1 - \hat{s} - \hat{M}_{K^{*}}^{2})(1 + \hat{M}_{K^{*}})^{2}\tilde{r}_{b}A_{1} - \hat{\lambda}\,\tilde{r}_{c}A_{2}}{2\,\hat{M}_{K^{*}}(1 + \hat{M}_{K^{*}})\sqrt{\hat{s}}}$$

 $\Rightarrow \text{Universal short-distance coefficients: } C^{L,R} = C_9^{\text{eff}} + \kappa \frac{2m_b M_B}{q^2} C_7^{\text{eff}} \mp C_{10}$ (SM: $C_9 \sim +4$, $C_{10} \sim -4$, $C_7 \sim -0.3$)

known structure of sub-leading corrections [Grinstein/Pirjol hep-ph/0404250]

$$ilde{ extsf{t}}_i \sim \pm rac{\Lambda_{ extsf{QCD}}}{m_b} \left(C_7^{ extsf{eff}} + lpha_{m{s}}(\mu) m{ extsf{e}}^{i \delta_i}
ight), \qquad \qquad i = m{a}, m{b}, m{c}$$

form factors ("helicity FF's" [Bharucha/Feldmann/Wick arXiv:1004.3249])

$$f_{\perp} = \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{M}_{K^*}} V, \quad f_{\parallel} = \sqrt{2} \left(1 + \hat{M}_{K^*}\right) A_1, \quad f_0 = \frac{(1 - \hat{s} - \hat{M}_{K^*}^2)(1 + \hat{M}_{K^*})^2 A_1 - \hat{\lambda} A_2}{2 \hat{M}_{K^*} (1 + \hat{M}_{K^*}) \sqrt{\hat{s}}}$$

$B \to K^*$ Form factors at high- $q^2 \dots$

 \ldots only known from extrapolation of LCSR at low- $q^2 \Rightarrow$ Lattice results desirable

LCSR extrapolation (Ball/Zwicky hep-ph/0412079) of $T_1(q^2)$ and $T_2(q^2)$ to high- q^2 versus quenched Lattice (3 data sets from Becirevic/Lubicz/Mescia hep-ph/0611295)

new unquenched Lattice results to come → Liu/Meinel/Hart/Horgan/Müller/Wingate arXiv:0911.2370, arXiv:1101.2726 no final uncertainty estimate yet

Angular observables $(m_\ell=0)$ – in terms of transversity amplitudes

$$\begin{split} 4 \, J_{2s} &= |A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + (L \to R), & -J_{2c} &= |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2}, \\ 2 \, J_{3} &= |A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R), & \sqrt{2} \, J_{4} &= \operatorname{Re} \bigg[A_{0}^{L} A_{\parallel}^{L*} + (L \to R) \bigg], \\ \frac{J_{5}}{\sqrt{2}} &= \operatorname{Re} \bigg[A_{0}^{L} A_{\perp}^{L*} - (L \to R) \bigg], & \frac{J_{6s}}{2} &= \operatorname{Re} \bigg[A_{\parallel}^{L} A_{\perp}^{L*} - (L \to R) \bigg], \\ \frac{J_{7}}{\sqrt{2}} &= \operatorname{Im} \bigg[A_{0}^{L} A_{\parallel}^{L*} - (L \to R) \bigg], & \sqrt{2} \, J_{8} &= \operatorname{Im} \bigg[A_{0}^{L} A_{\perp}^{L*} + (L \to R) \bigg], \\ J_{9} &= \operatorname{Im} \bigg[A_{\perp}^{L} A_{\parallel}^{L*} + (L \to R) \bigg] \end{split}$$

Angular observables $(m_\ell=0)$ – in terms of transversity amplitudes

$$\begin{split} 4 \, J_{2s} &= |A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + (L \to R), \qquad -J_{2c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2}, \\ 2 \, J_{3} &= |A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R), \qquad \sqrt{2} \, J_{4} = \operatorname{Re} \bigg[A_{0}^{L} A_{\parallel}^{L*} + (L \to R) \bigg], \\ \frac{J_{5}}{\sqrt{2}} &= \operatorname{Re} \bigg[A_{0}^{L} A_{\perp}^{L*} - (L \to R) \bigg], \qquad \frac{J_{6s}}{2} = \operatorname{Re} \bigg[A_{\parallel}^{L} A_{\perp}^{L*} - (L \to R) \bigg], \\ \frac{J_{7}}{\sqrt{2}} &= \operatorname{Im} \bigg[A_{0}^{L} A_{\parallel}^{L*} - (L \to R) \bigg], \qquad \sqrt{2} \, J_{8} = \operatorname{Im} \bigg[A_{0}^{L} A_{\perp}^{L*} + (L \to R) \bigg], \\ J_{9} &= \operatorname{Im} \bigg[A_{\perp}^{L} A_{\parallel}^{L*} + (L \to R) \bigg] \end{split}$$

Within SM-basis and $m_{\ell} = 0 \rightarrow$ out of 12 J_i only 8 independent

$$J_{1s} = 3 J_{2s}, \qquad J_{1c} = -J_{2c}, \qquad J_{6c} = 0$$

and a 4th (not so trivial) relation

[Egede/Hurth/Matias/Ramon/Reece arXiv:1005.0571]

C. Bobetr	ı
-----------	---

BEACH 2012

July 26, 2012 43 / 1

Angular observables $(m_\ell=0)$ – in terms of transversity amplitudes

$$\begin{split} 4 \, J_{2s} &= |A_{\perp}^{L}|^{2} + |A_{\parallel}^{R}|^{2} + (L \to R), \qquad -J_{2c} = |A_{0}^{L}|^{2} + |A_{0}^{R}|^{2}, \\ 2 \, J_{3} &= |A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R), \qquad \sqrt{2} \, J_{4} = \operatorname{Re} \bigg[A_{0}^{L} A_{\parallel}^{L*} + (L \to R) \bigg], \\ \frac{J_{5}}{\sqrt{2}} &= \operatorname{Re} \bigg[A_{0}^{L} A_{\perp}^{L*} - (L \to R) \bigg], \qquad \frac{J_{6s}}{2} = \operatorname{Re} \bigg[A_{\parallel}^{L} A_{\perp}^{L*} - (L \to R) \bigg], \\ \frac{J_{7}}{\sqrt{2}} &= \operatorname{Im} \bigg[A_{0}^{L} A_{\parallel}^{L*} - (L \to R) \bigg], \qquad \sqrt{2} \, J_{8} = \operatorname{Im} \bigg[A_{0}^{L} A_{\perp}^{L*} + (L \to R) \bigg], \\ J_{9} &= \operatorname{Im} \bigg[A_{\perp}^{L} A_{\parallel}^{L*} + (L \to R) \bigg] \end{split}$$

For example at Large Recoil: J_{2s} , J_3 , J_{6s} , $J_9 \sim \xi_{\perp} \Rightarrow$ ratios have reduced hadronic uncertainty

$$A_{T}^{(2)} = \frac{J_{3}}{2 J_{2s}}, \qquad A_{T}^{(re)} = \frac{J_{6s}}{4 J_{2s}}, \qquad A_{T}^{(im)} = \frac{J_{9}}{2 J_{2s}}$$

[Krüger/Matias hep-ph/0502060, Becirevic/Schneider, arXiv:1106.3283]

C. Bobeth	BEACH 2012	July 26, 2012	43 / 1
-----------	------------	---------------	--------

Angular observables @ Low Recoil using FF relations [CB/Hiller/van Dyk arXiv:1006.5013]

$$\begin{aligned} &\frac{4}{3}(2\,J_{2s}+J_3)=2\,\rho_1\,f_{\perp}^2, & -\frac{4}{3}J_{2c}=2\,\rho_1\,f_0^2, & \frac{2\sqrt{2}}{3}J_5=4\,\rho_2\,f_0f_{\perp}, \\ &\frac{4}{3}(2\,J_{2s}-J_3)=2\,\rho_1\,f_{\parallel}^2, & \frac{4\sqrt{2}}{3}\,J_4=2\,\rho_1\,f_0f_{\parallel}, & \frac{2}{3}J_{6s}=4\,\rho_2\,f_{\parallel}f_{\perp}, \\ &J_7=J_8=J_9=0, & f_{\perp,\parallel,0}=\text{form factors} \end{aligned}$$

Angular observables @ Low Recoil using FF relations

[CB/Hiller/van Dyk arXiv:1006.5013]

$$\begin{split} &\frac{4}{3}(2\,J_{2s}+J_3)=2\,\rho_1\,f_{\perp}^2, \qquad \quad -\frac{4}{3}J_{2c}=2\,\rho_1\,f_0^2, \\ &\frac{4}{3}(2\,J_{2s}-J_3)=2\,\rho_1\,f_{\parallel}^2, \qquad \quad \frac{4\sqrt{2}}{3}\,J_4=2\,\rho_1\,f_0f_{\parallel}, \\ &J_7=J_8=J_9=0, \qquad \qquad \qquad f_{\perp,\parallel,0}=\text{form factors} \end{split}$$

$$\frac{2\sqrt{2}}{3}J_5 = 4\,\rho_2\,f_0f_{\perp},$$
$$\frac{2}{3}J_{6s} = 4\,\rho_2\,f_{\parallel}f_{\perp},$$

 $\rho_{\rm 1}$ and $\rho_{\rm 2}$ are largely $\mu_b{\rm -scale}$ independent

$$\begin{split} \rho_1(q^2) &\equiv \left| C_9^{\text{eff}} + \kappa \frac{2m_b^2}{q^2} C_7^{\text{eff}} \right|^2 + \left| C_{10} \right|^2, \\ \rho_2(q^2) &\equiv \text{Re} \left[\left(C_9^{\text{eff}} + \kappa \frac{2m_b^2}{q^2} C_7^{\text{eff}} \right) C_{10}^* \right] \end{split}$$

 $\kappa(\mu_{\rm b})$ radiative QCD-correction to matching of FF relations between QCD and HQET

 \Rightarrow accounts for $\mu_{b}\text{-dependence}$ of tensor form factors $T_{1,2,3}$

C. Bobeth

Angular observables @ Low Recoil using FF relations [CB/Hiller/van Dyk arXiv:1006.5013]

. .

$$\begin{split} &\frac{4}{3}(2\,J_{2s}+J_3)=2\,\rho_1\,f_{\perp}^2, \qquad -\frac{4}{3}J_{2c}=2\,\rho_1\,f_0^2, \qquad \frac{2\sqrt{2}}{3}J_5=4\,\rho_2\,f_0f_{\perp}, \\ &\frac{4}{3}(2\,J_{2s}-J_3)=2\,\rho_1\,f_{\parallel}^2, \qquad \frac{4\sqrt{2}}{3}\,J_4=2\,\rho_1\,f_0f_{\parallel}, \qquad \frac{2}{3}J_{6s}=4\,\rho_2\,f_{\parallel}f_{\perp}, \\ &J_7=J_8=J_9=0, \qquad f_{\perp,\parallel,0}=\text{form factors} \end{split}$$

$$\begin{aligned} \frac{dI}{dq^2} &= 2\,\rho_1 \times (f_0^2 + f_\perp^2 + f_\parallel^2), \\ F_L &= \frac{f_0^2}{f_0^2 + f_\perp^2 + f_\parallel^2}, \\ A_T^{(2)} &= \frac{f_\perp^2 - f_\parallel^2}{f_\perp^2 + f_\parallel^2}, \\ A_T^{(3)} &= \frac{f_\parallel}{f_\perp}, \\ A_T^{(3)} &= \frac{f_\parallel}{f_\perp}, \\ A_T^{(4)} &= 2\,\frac{\rho_2}{\rho_1} \times \frac{f_\perp}{f_\parallel}, \end{aligned}$$

at low recoil: F_L , $A_T^{(2)}$, $A_T^{(3)}$ are short-distance independent, contrary to large recoil ⇒ could be used to fit form factor shape

Angular observables @ Low Recoil using FF relations

[CB/Hiller/van Dyk arXiv:1006.5013]

$$\begin{aligned} &\frac{4}{3}(2\,J_{2s}+J_3)=2\,\rho_1\,f_{\perp}^2, & -\frac{4}{3}J_{2c}=2\,\rho_1\,f_0^2, & \frac{2\sqrt{2}}{3}J_5=4\,\rho_2\,f_0f_{\perp}, \\ &\frac{4}{3}(2\,J_{2s}-J_3)=2\,\rho_1\,f_{\parallel}^2, & \frac{4\sqrt{2}}{3}\,J_4=2\,\rho_1\,f_0f_{\parallel}, & \frac{2}{3}J_{6s}=4\,\rho_2\,f_{\parallel}f_{\perp}, \\ &J_7=J_8=J_9=0, & f_{\perp,\parallel,0}=\text{form factors} \end{aligned}$$

$$\frac{d\Gamma}{dq^2} = 2 \rho_1 \times (f_0^2 + f_\perp^2 + f_\parallel^2), \qquad \qquad A_{\rm FB} = 3 \frac{\rho_2}{\rho_1} \times \frac{t_\perp t_\parallel}{(f_0^2 + f_\perp^2 + f_\parallel^2)},$$

$$F_{L} = \frac{f_{0}^{2}}{f_{0}^{2} + f_{\perp}^{2} + f_{\parallel}^{2}}, \qquad A_{T}^{(2)} = \frac{f_{\perp}^{2} - f_{\parallel}^{2}}{f_{\perp}^{2} + f_{\parallel}^{2}}, \qquad A_{T}^{(3)} = \frac{f_{\parallel}}{f_{\perp}}, \qquad A_{T}^{(4)} = 2\frac{\rho_{2}}{\rho_{1}} \times \frac{f_{\perp}}{f_{\parallel}}$$

at low recoil: F_L , $A_T^{(2)}$, $A_T^{(3)}$ are short-distance independent, contrary to large recoil \Rightarrow could be used to fit form factor shape

All relations valid up to sub-leading corrections in $C_7/C_9 \times \Lambda_{\rm QCD}/m_b$ due to FF relations. (Later: OPE of 4-quark contributions yield also additional $(\Lambda_{\rm QCD}/m_b)^2$)

BEACH 2012

FF-free CP-asymmetries @ low recoil

$$a_{\rm CP}^{(1)} = \frac{\rho_1 - \bar{\rho}_1}{\rho_1 + \bar{\rho}_1}, \qquad \qquad a_{\rm CP}^{(2)} = \frac{\frac{\rho_2}{\rho_1} - \frac{\bar{\rho}_2}{\bar{\rho}_1}}{\frac{\rho_2}{\rho_1} + \frac{\bar{\rho}_2}{\bar{\rho}_1}}, \qquad \qquad a_{\rm CP}^{(3)} = 2\frac{\rho_2 - \bar{\rho}_2}{\rho_1 + \bar{\rho}_1}$$

- NLO QCD corrections large ⇒ decrease CP-asymmetries
- still, theoretical uncertainties large: dominated by renorm. scale μ_b

FF-free CP-asymmetries @ low recoil

$$a_{\rm CP}^{(1)} = \frac{\rho_1 - \bar{\rho}_1}{\rho_1 + \bar{\rho}_1}, \qquad \qquad a_{\rm CP}^{(2)} = \frac{\frac{\rho_2}{\rho_1} - \frac{\bar{\rho}_2}{\bar{\rho}_1}}{\frac{\rho_2}{\rho_1} + \frac{\bar{\rho}_2}{\bar{\rho}_1}}, \qquad \qquad a_{\rm CP}^{(3)} = 2\frac{\rho_2 - \bar{\rho}_2}{\rho_1 + \bar{\rho}_1}$$

- NLO QCD corrections large ⇒ decrease CP-asymmetries
- still, theoretical uncertainties large: dominated by renorm. scale μ_b

$B_{\!S} \to \phi(\to K^+ K^-) + \ell^+ \ell^-$

- time-integrated a_{CP}^{mix} in $B_s \rightarrow \phi(\rightarrow K^+K^-) + \bar{\ell}\ell$ is CP-odd = untagged
- a_{CP}^{mix} depends only on $(\Delta\Gamma_s/\Gamma_s)^2 \Rightarrow$ no sensitivity to sign of $\Delta\Gamma_s$
- since (ΔΓ_s/Γ_s)² ≪ 1 no significant sensitivity to B_s mixing parameters
 ⇒ comparable to a⁽³⁾_{CP} [B → K*ℓ⁺ℓ⁻]

FF-free CP-asymmetries @ low recoil

$$a_{\rm CP}^{(1)} = \frac{\rho_1 - \bar{\rho}_1}{\rho_1 + \bar{\rho}_1}, \qquad \qquad a_{\rm CP}^{(2)} = \frac{\frac{\rho_2}{\rho_1} - \frac{\bar{\rho}_2}{\bar{\rho}_1}}{\frac{\rho_2}{\rho_1} + \frac{\bar{\rho}_2}{\bar{\rho}_1}}, \qquad \qquad a_{\rm CP}^{(3)} = 2\frac{\rho_2 - \bar{\rho}_2}{\rho_1 + \bar{\rho}_1}$$

- NLO QCD corrections large ⇒ decrease CP-asymmetries
- still, theoretical uncertainties large: dominated by renorm. scale μ_b

$B_{\!S} \to \phi(\to K^+ K^-) + \ell^+ \ell^-$

- time-integrated a_{CP}^{mix} in $B_s \rightarrow \phi(\rightarrow K^+K^-) + \bar{\ell}\ell$ is CP-odd = untagged
- a_{CP}^{mix} depends only on $(\Delta\Gamma_s/\Gamma_s)^2 \Rightarrow$ no sensitivity to sign of $\Delta\Gamma_s$
- since (ΔΓ_s/Γ_s)² ≪ 1 no significant sensitivity to B_s mixing parameters
 ⇒ comparable to a⁽³⁾_{CP} [B → K*ℓ⁺ℓ⁻]

 $B \to K \ell^+ \ell^-$

• @ high- q^2 : $A_{CP}[B \to K \ell^+ \ell^-] = a_{CP}^{(1)}[B \to K^* \ell^+ \ell^-]$ in SM operator basis