Lattice QCD and flavor physics

Aida X. El-Khadra (UIUC)

BEACH 20I2,Wichita, KS, 23-28 July 2012

Outline

Q Introduction and Motivation

- Kaons and pions
- leptonic and SL decays $V_{u s}, V_{u s} / V_{u d}$

$$
f_{K} / f_{\pi} \text { and } f_{+}^{\vec{K} \rightarrow \pi}(0)
$$

- neutral K mixing and nonleptonic decays $B_{K} \& \epsilon_{K}$

$$
K \rightarrow \pi \pi \& \epsilon_{K}^{\prime} / \epsilon_{K}
$$

- $B \& D$ mesons
- leptonic $B \& D$ decays $f_{B}, f_{B_{s}}, f_{B_{s}} / f_{B}, f_{D}, f_{D_{s}}, f_{D_{s}} / f_{D}$
- neutral B mixing $f_{B} \sqrt{B_{B}}, f_{B_{s}} \sqrt{B_{B_{s}}}, \xi$
- heavy to light decays $B \rightarrow \pi \ell \nu$ \& $V_{u b}$

$$
\begin{aligned}
& D \rightarrow K(\pi) \ell \nu \& V_{c s(d)} \\
& B \rightarrow K \ell^{+} \ell^{-}
\end{aligned}
$$

- B to D or D^{*} decays $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

$$
B_{s} \rightarrow D_{s} \ell \nu / B \rightarrow D \ell \nu \& B_{s} \rightarrow \mu^{+} \mu-, \quad B \rightarrow D \tau \ell \nu
$$

© Conclusions \& outlook
© Appendix \& glossary

Why Lattice QCD?

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010)

Error bands are (still) dominated by theory errors, in particular due to hadronic matrix elements.

Why Lattice QCD?...cont'd

generic weak process involving hadrons:
(experiment) $=($ known $) \times($ CKM elements $) \times($ had. matrix element $)$

$$
\begin{aligned}
& \Delta m_{d(s)} \\
& \frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}, \frac{d \Gamma(D \rightarrow K \ell \nu)}{d q^{2}}, \ldots \\
& \frac{d \Gamma\left(B \rightarrow D^{(*)} \ell \nu\right.}{d \omega} \\
& R(D)=\frac{\operatorname{Br}(B \rightarrow D \tau \nu)}{\operatorname{Br}(B \rightarrow D \ell \nu)}
\end{aligned}
$$

Lattice QCD

parameterize the ME in terms of form factors, decay constants, bag parameters, ...

Why Lattice QCD?...cont'd

example:

$$
B-\bar{B} \text { mixing }
$$

Introduction to Lattice QCD

$$
\langle\mathcal{O}\rangle \sim \int \mathcal{D} \psi \mathcal{D} \bar{\psi} \mathcal{D} A \mathcal{O}(\psi, \bar{\psi}, A) e^{-S} \quad S=\int d^{4} x\left[\bar{\psi}(\not D+m) \psi+\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2}\right]
$$

use monte carlo methods (importance sampling) to evaluate the integral.
Note: integrating over the fermion fields leaves $\operatorname{det}(D D+m)$ in the integrand. the correlation functions, \mathcal{O}, are then written in terms of $(D+m)^{-1}$ and gluon fields

steps of a lattice QCD calculation:

1. generate gluon field configurations according to $\operatorname{det}(I D+m) e^{-S}$
2. calculate quark propagators, $\left(D D+m_{q}\right)^{-1}$, for each valence quark flavor and source point
3. tie together quark propagators into hadronic correlation functions (usually 2 or 3pt functions)
4. statistical analysis to extract hadron masses, energies, hadronic matrix elements, from correlation functions
5. systematic error analysis

errors, errors, errors, ...

\checkmark statistical errors: from monte carlo integration also need to include errors from fit procedures
\rangle finite lattice spacing, $a:\langle\mathcal{O}\rangle^{\text {lat }}=\langle\mathcal{O}\rangle^{\text {cont }}+O(a p)^{n}$ take continuum limit:
computational effort grows like $\sim(L / a)^{5-6}$
L
-7
\checkmark finite volume: keep $\mathrm{m}_{\pi} L>4$
$>m_{l}$ dependence: chiral extrapolation
in numerical simulations, $m_{l}>m_{u d}$ but very recently ensembles with $m_{l}=m_{u d}$ (i.e. at physical value!)
\Rightarrow use chiral perturbation theory to extrapolate or interpolate

$a(\mathrm{fm})$

$\checkmark n_{f}$ dependence: realistic sea quark effects: use $n_{f}=2+1$ or $n_{f}=2+1+1$
renormalization: $\left\langle J_{\mu}^{\text {cont }}\right\rangle=Z^{\text {lat }}\left\langle J_{\mu}^{\text {lat }}\right\rangle$
\Rightarrow use lattice perturbation theory: $Z=z^{(0)}+z^{(1)} \alpha_{s}+z^{(2)} \alpha_{s}^{2}+O\left(\alpha_{s}^{3}\right)$ need to include PT errors
\Rightarrow use nonrenormalized operators where possible
\Rightarrow or use nonperturbative methods

LQCD: Current status

plot by C. Hoelbling (based on Rev. Mod. Phys. 84 (2012) 449)

Different groups use different actions \& methods see glossary in Appendix
stable (or almost stable) hadrons, masses and amplitudes with no more than one initial (final) state hadron, for example:

Focus on "easy" LQCD calculations

stable (or almost stable) hadrons, masses and amplitudes with no more than one initial (final) state hadron, for example:

- $\pi, K, D, D_{s}, B, B_{s}$ mesons
masses, decay constants, weak matrix elements for mixing, semileptonic and rare decay form factors
- charmonium and bottomonium ($\left.\eta_{c}, J / \psi, h_{c}, \ldots, \eta_{b}, \mathrm{Y}(1 \mathrm{~S}), \mathrm{Y}(2 \mathrm{~S}), ..\right)$ states below open D / B threshold
masses, leptonic widths, electromagnetic matrix elements

This list includes most of the important quantities for CKM physics. Excluded are ρ, K^{*} mesons and other resonances.

Lattice QCD program relevant to CKM elements

$$
\begin{aligned}
& V_{u d} \underset{V_{u s}}{ } \quad \begin{array}{c}
V_{u b} \\
K \rightarrow \pi l v
\end{array} \quad B \rightarrow \pi l v \\
& \pi \rightarrow \mu \nu, K \rightarrow \mu \nu \\
& V_{c d} \\
& V_{c s} \\
& D \rightarrow \pi l v \\
& D \rightarrow K l v \\
& B \rightarrow D, D^{*} l v \\
& D \rightarrow l v \quad D_{s} \rightarrow l v \\
& V_{t d} \\
& V_{t s} \\
& B^{0}-\overline{B^{0}} \text { mixing } B_{s}-\overline{B_{s}} \\
& K^{0}-\overline{K^{0}} \\
& V_{t b}
\end{aligned}
$$

Strategy

- Lattice QCD action has the same free parameters as continuum QCD: quark masses and α_{s}
- use experimentally measured hadron masses as input, for example: π, K, D_{s}, B_{s} mesons for u, d, s, c, b quark masses
- need an experimental input to determine the lattice spacing (a) in GeV : $2 \mathrm{~S}-1 \mathrm{~S}$ splitting in Y system, f_{π}, Ξ mass, \ldots this also determines α_{s}
- lattice QCD calculations of all other quantities should agree with experiment ...

LQCD Achievements

MILC+HPQCD+FNAL (Phys. Rev. Lett. 92:022001,2004)
lattice QCD/experiment

see Appendix for a (partial) list of other LQCD achievements

LQCD Achievements: Hadron spectrum

$\pi \ldots$:.Ω :
D, B : Fermilab, HPQCD, Mohler-Woloshyn

LQCD Achievements: $f_{D s}$ time history

A. Kronfeld (Annu. Rev. Part. \& Nucl. Sci, arXiv:1203.1204)

see Appendix for other LQCD predictions

progress in last ~ 5 years

I will focus on reliable LQCD results that can be used for testing the SM!

new results reported at Lattice 2012

Lattice Averages

- We now have reliable \& independent lattice results from different lattice groups using different methods for an increasing number of quantities \Rightarrow need averages \Rightarrow inputs into UT fits
- two efforts:

1. FLAG-1 (Flavianet Lattice Averaging Group)

Colangelo, et al (Eur. Phys. J. C71 (2011) 1695, http://itpwiki.unibe.ch/flag) 12 people (EU) light quark quantities only
2. LLV (Laiho, Lunghi, Van de Water)
(Phys.Rev.D81:034503,2010, http://latticeaverages.org/)
light and heavy quark quantities

+ UT fits with lattice averages as input

Lattice Averages

- We now have reliable \& independent lattice results from different lattice groups using different methods for an increasing number of quantities \Rightarrow need averages \Rightarrow inputs into UT fits
- two efforts:

1. FLAG-1 (Flavianet Lattice Averaging Group)

Colangelo, et al (Eur. Phys. J. C71 (2011) 1695, http://itpwiki.unibe.ch/flag) 12 people (EU) light quark quantities only

+ 2. LLV (Laiho, Lunghi, Van de Water)
(Phys.Rev.D81:034503,2010, http://latticeaverages.org/)
light and heavy quark quantities
+ UT fits with lattice averages as input

$=$ FLAG -2 (Flavor Lattice Averaging Group)

28 people (EU, US, Japan) representing all big lattice collaborations light and heavy quark quantities
$1^{\text {st }}$ review at end of 2012

Kaons and pions

- leptonic and semileptonic decay

$$
\left.\begin{array}{l}
f_{K} / f_{\pi} \\
f_{+}^{K \rightarrow \pi}(0)
\end{array}\right\} \quad V_{u s}, V_{u s} / V_{u d}
$$

\uparrow mixing and nonleptonic decay

$$
\begin{aligned}
& B_{K} \& \epsilon_{K} \\
& K \rightarrow \pi \pi \& \epsilon_{K}^{\prime} / \epsilon_{K}
\end{aligned}
$$

leptonic K, π, D, and B meson decays

example: $B \rightarrow \tau \nu$

$\Gamma(B \rightarrow \tau \nu)=($ known $) \times\left(\left|V_{u b}\right|^{2}\right) \times f_{B}^{2}$

Same for K, π, D mesons
use exp. combined with LQCD input for:

- determination of CKM element
- constraints on new physics (D, B)

Kaon and pion decay constant ratio

f_{K} / f_{π}
$(\sim 0.4 \%$ error $)$
new results presented at Lattice 2012 not yet included.

FLAG-2 update (G. Colangelo at Lattice 2012)

semileptonic K, D, and B decays

Form factor for $K \rightarrow \pi \ell \nu$

FLAG-2 update (G. Colangelo at Lattice 2012)

$\begin{aligned} & \underset{\sim}{+} \\ & \underset{Z}{Z} \end{aligned}$		JLQCD 11 RBC/UKQCD 10 RBC/UKQCD 07 our estimate for $\mathrm{N}_{\mathrm{f}}=2+1$
$\begin{aligned} & \mathbb{N} \\ & Z \end{aligned}$		ETM 10D ETM 09A QCDSF 07 RBC 06 JLQCD 05 JLQCD 05 our estimate for $\mathrm{N}_{\mathrm{f}}=2$
$\frac{\stackrel{U}{\#}}{\frac{U}{U}}$		Kastner 08 Cirigliano 05 Jamin 04 Bijnens 03 LR 84

$$
f_{+}^{K \rightarrow \pi}(0)
$$

- new results by FNAL/MILC, RBC/UKQCD, JLQCD @ Lattice 2012.
- FNAL/MILC (Gamiz @ Lattice 2012): preliminary results with physical light quark masses

$V_{u d}$ and $V_{u s}$

FLAG-2 update (G. Colangelo at Lattice 2012)

$\left|\frac{V_{u s}}{V_{u d}}\right| \frac{f_{K}}{f_{\pi}}=0.2758(5)$
(M. Antonelli, Eur. Phys. J. C (2010)69, 399)
$\left|V_{u s}\right| f_{+}(0)=0.2163(5)$
\Rightarrow unitarity test of $1^{\text {st }}$ row of CKM matrix at 0.1% level

neutral K, B, and B_{s} meson mixing

example:

$$
B_{d}^{0}-\overline{B_{d}^{0}} \text { mixing }
$$

$$
\frac{\Delta M_{s}}{\Delta M_{d}}=\frac{m_{B_{s}}}{m_{B d}} \times\left|\frac{V_{t s}}{V_{t d}}\right|^{2} \times \xi^{2} \quad \text { with } \quad \xi \equiv \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}
$$

- many groups also calculate BSM mixing parameters
- for kaon mixing, just need to calculate the bag parameter(s).

B_{K} and ϵ_{K}

$$
\epsilon_{K}=(\text { known }) \times B_{K} \kappa_{\epsilon} \times\left|V_{c b}\right|^{2} \times \underbrace{\substack{\text { non-local } \\ \text { operator }}}_{\substack{\text { ME of local } \\ \text { operator }}}
$$

B_{K} and ϵ_{K}

B_{K}

updates by RBC/UKQCD, SWME, ETMC at Lattice 2012

also new results for BSM MEs

[^0]
B_{K} and ϵ_{K}

$$
\epsilon_{K}=(\text { known }) \times B_{K} \kappa_{\epsilon} \times\left|V_{c b}\right|^{2} \times \bar{\eta} \times f\left(\bar{\rho}, \bar{\eta}, V_{c b}, \eta_{i}\right)
$$

Enrico Lunghi (based on arXiv:1204.0791)

Dominant error on ϵ_{K} is now due to:

1. $V_{c b}$ 2. $\eta_{c c}$ or η_{1} (NNLO pert. QCD)

$K \rightarrow \pi \pi \& \epsilon_{K}^{\prime} / \epsilon_{K}$: beyond "easy"

$\Delta I=3 / 2$

- First quantitative results have been obtained by the RBC group at the ~20\% level from a direct calculation at small pion mass
(arXiv:1111.1699, 1111.4889, updated @ Lattice 2012).
- A new method was developed by Laiho \& Van de Water based on combining ChPT (indirect) and direct methods (arXiv:1011.4524), expect $\sim 20 \%$ error

$$
\Delta I=1 / 2
$$

- First calculation using the direct method on small volume and large pion mass with a 25% statistical error to establish feasibility by RBC group (arXiv:1111.1699, updated @ Lattice 2012).
- goal is obtain results for $\epsilon^{\prime} / \epsilon$ with $\sim 20 \%$ (stat+sys) error

B and D mesons

\checkmark leptonic $B \& D$ decays

$$
f_{B}, f_{B_{s}}, f_{B_{s}} / f_{B}, f_{D}, f_{D_{s}}, f_{D_{s}} / f_{D}
$$

\uparrow neutral B meson mixing

$$
f_{B} \sqrt{B_{B}}, f_{B_{s}} \sqrt{B_{B_{s}}}, \xi
$$

\uparrow semileptonic $B \& D$ decays

$$
\begin{aligned}
B & \rightarrow \pi \ell \nu \& V_{u b} \quad D \rightarrow K(\pi) \ell \nu \& V_{c s(d)} \\
B & \rightarrow K \ell^{+} \ell^{-} \\
B & \rightarrow D^{(*)} \ell \nu \& V_{c b} \\
B_{s} & \rightarrow D_{s} \ell \nu / B \rightarrow D \ell \nu \& B_{s} \rightarrow \mu^{+} \mu-, \quad B \rightarrow D \tau \ell \nu
\end{aligned}
$$

B and B_{s} meson decay constants

 Laiho, Lunghi \& Van

- HPQCD 11: uses HISQ b quarks, with extrapolation to physical b quarks mass using $1 / \mathrm{m}$ expansion.
- HPQCD 12: uses NRQCD b quarks, updated @ Lattice 2012.
- FNAL/MILC'11: results based on small data set. Lattice 2012: new results on full data set with $n_{f}=2+1$ coming soon.
- RBC/UKQCD: first results using rel. HQ action.
- $n_{f}=2$: results by ALPHA, ETMC, updated at Lattice 2012.

D and D_{s} meson decay constants

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010)

B and B_{s} meson mixing parameters

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010)

- FNAL/MILC'11: preliminary results from partial data set for all 5 operators (including BSM) updated at Lattice 2012
- FNAL/MILC 2012: final analysis on small data set
- RBC/UKQCD: first results using rel. HQ action expected \sim one year
- ETMC ($n_{f}=2$): first preliminary results presented at Lattice 2012 also results for D mixing

semileptonic D and B decays

example: $B \rightarrow \pi \ell \nu$

$$
\left.\frac{d \Gamma(B \rightarrow \pi \ell \nu)}{d q^{2}}=(\text { known }) \times\left|V_{u b}\right|^{2}\right) \times\left|f_{+}\left(q^{2}\right)\right|^{2}
$$

\star normalization $f_{+}(0) \Rightarrow V_{\text {CKM }}$

* shape for B, D 's:
use z-expansion for model-independent parameterization of q^{2} dependence
\star test LQCD with shape, not normalization

Form factor for $B \rightarrow \pi \ell \nu \& V_{u b}$

FNAL/MILC (PRD 79, 054507 (2009)) + BaBar (PRL 98, 091801 (2007))

z-expansion:

\star compare shape between LQCD and exp.
\star combined fit of lattice and exp. data from different recoil regions
\Rightarrow better determination of $V_{u b}$

Form factors for $B \rightarrow \pi \ell \nu \& V_{u b}$

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010)

Lattice 2012:

- new prelim. results by HPQCD, FNAL/MILC
- RBC/UKQCD: first results using rel. HQ action ~ one year
- ALPHA ($n_{f}=2$): first prelim. results in static limit
cf. PDG'12 (HFAG 2011) (inclusive):

$$
\left|V_{u b}\right|=\left(4.41 \pm 0.15_{-0.17}^{+0.15}\right) \times 10^{-3}
$$

FNAL/MILC, HPQCD:
expect first results for $B_{s} \rightarrow K \ell \nu \sim$ one year

Form factors for $D \rightarrow K(\pi) \ell \nu \& V_{c s(d)}$

Heechang Na (HPQCD PRD 84 (2011) 114505 \& PRD 82 (2010) 114506)

new method by HPQCD:

- use HISQ action for charm and light quarks
- calculate $f_{0}\left(q^{2}=0\right)$ from scalar current matrix element that doesn't require renormalization
- use kinematic constraint $f_{+}(0)=f_{0}(0)$

Form factors for $D \rightarrow K(\pi) \ell \nu \& V_{c s(d)}$

Heechang Na (HPQCD PRD 84 (2011) 114505 \& PRD 82 (2010) 114506)

\Rightarrow unitarity test of $2^{\text {nd }}$ row of CKM matrix:

$$
\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=0.976(50)
$$

Form factors for $D \rightarrow K(\pi) \ell \nu \& V_{c s(d)}$

 Jon Bailey (FNAL/MILC Lattice 2012)

- shape from z-expansion
- partial data set (stat. errors only)

Form factors for $B \rightarrow K \ell^{+} \ell^{-}$

Ran Zhou (FNAL/MILC 2012)

-FNAL/MILC (Lattice 2012): shape from z-expansion, systematic errors included expect final results this fall

- HPQCD (Lattice 2012): preliminary results for $B \rightarrow K^{*} \ell^{+} \ell^{-}, B_{s} \rightarrow \phi \ell^{+} \ell^{-}, \ldots$ assume K^{*} stable (narrow width approximation)

Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

$$
\begin{aligned}
& \frac{d \Gamma\left(B \rightarrow D^{*} \ell \nu\right)}{d \omega}=(\text { known }) \times\left|V_{c b}\right|^{2} \times\left(\omega^{2}-1\right)^{1 / 2}|\mathcal{F}(\omega)|^{2} \\
& \frac{d \Gamma(B \rightarrow D \ell \nu)}{d \omega}=(\text { known }) \times\left|V_{c b}\right|^{2} \times\left.\left(\omega^{2}-1\right)^{3 / 2} \mathcal{G}(\omega)\right|^{2}
\end{aligned}
$$

at zero recoil (HFAG 2011):

$$
\begin{gathered}
B \rightarrow D^{*} \ell \nu:\left|V_{c b}\right| \mathcal{F}(1)=(35.90 \pm 0.45) \times 10^{-3} \\
B \rightarrow D \ell \nu:\left|V_{c b}\right| \mathcal{G}(1)=(42.6 \pm 1.5) \times 10^{-3}
\end{gathered}
$$

\Rightarrow need form-factors at non-zero recoil for $B \rightarrow D \ell \nu$ to match precision for $V_{c b}$ determination from $B \rightarrow D^{*} \ell \nu$

Form factors for $B \rightarrow D^{(*)} \ell \nu \& V_{c b}$

Laiho, Lunghi \& Van de Water (Phys.Rev.D81:034503,2010)

$\left|V_{c b}\right|=(39.5 \pm 1.0) \times 10^{-3}$
cf. PDG'12 (HFAG) (inclusive):

$$
\left|V_{c b}\right|=(41.9 \pm 0.7) \times 10^{-3}
$$

Form factor ratio $R(D)=\operatorname{Br}(B \rightarrow D \tau \nu) / \operatorname{Br}(B \rightarrow D \ell \nu)$

$$
\frac{d \Gamma}{d q^{2}}=\left|V_{c b}\right|^{2} \times\left(\operatorname{known}\left(q^{2}\right)\right) \times\left[f_{+}^{2}\left(q^{2}\right)+(\text { known }) \times f_{0}^{2}\left(q^{2}\right) \times m_{\ell}^{2}\right]
$$

BaBar (V. Lüth, FPCP 2012, arXiv:1205.5442):
$R(D)=\frac{\operatorname{Br}(B \rightarrow D \tau \nu)}{\operatorname{Br}(B \rightarrow D \ell \nu)}=0.440(71)$
to compare to SM we need the form factors at non-zero recoil.

Form factor ratio $R(D)=\operatorname{Br}(B \rightarrow D \tau \nu) / \operatorname{Br}(B \rightarrow D \ell \nu)$
FNAL/MILC (arXiv:1206.4992, PRL)

2HDM II with FNAL/MILC

 form factors (band includes sys. error)FNAL/MILC form factors: from partial data set used in arXiv:1202.6346

2 HDM II with form factors using quenched LQCD, HQS, kinematic constraints, ...

- similar estimate for $R(D)_{\text {sm }}$ by Becirevic, Kosnik, Tayduganov (arXiv: 1206.4977)
- $R\left(D^{*}\right)$: need four form factors, larger discrepancy with SM

Form factor ratio $B_{s} \rightarrow D_{s} \ell \nu / B \rightarrow D \ell \nu \& B_{s} \rightarrow \mu^{+} \mu-$

- LHCb measures the rare Bs decay using a normalization channel

$$
\operatorname{Br}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=\operatorname{Br}\left(B_{d} \rightarrow X\right) \frac{f_{d}}{f_{s}} \frac{\epsilon_{X}}{\epsilon_{\mu \mu}} \frac{N_{\mu \mu}}{N_{X}}
$$

\Rightarrow They need to know f_{s} / f_{d}

- new strategy: determine f_{s} / f_{d} from hadronic decay ratio

$$
\operatorname{BR}\left(\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}\right) / \mathrm{BR}\left(\overline{\bar{B}}^{0} \rightarrow D^{+} K^{-}\right)
$$

using factorization (Fleischer et al, arXiv:1004.3984):

$$
\left(\frac{f_{s}}{f_{d}}=0.0743 \times \frac{\tau_{B^{0}}}{\tau_{B_{s}^{0}}} \times\left[\frac{\epsilon_{D K}}{\epsilon_{D_{s} \pi}} \frac{N_{D_{s} \pi}}{N_{D K}}\right] \times \frac{1}{\mathcal{N}_{a} \mathcal{N}_{F}} \quad \text { with } \quad \mathcal{N}_{a}=\left[\frac{a_{1}^{(s)}\left(D_{s}^{+} \pi^{-}\right)}{a_{1}^{(d)}\left(D^{+} K^{-}\right)}\right]^{2}\right.
$$

and $\quad \mathcal{N}_{F}=\left[\frac{f_{0}^{(s)}\left(M_{\pi}^{2}\right)}{f_{0}^{(d)}\left(M_{K}^{2}\right)}\right]^{2}$

Form factor ratio $B_{s} \rightarrow D_{s} \ell \nu / B \rightarrow D \ell \nu \& B_{s} \rightarrow \mu^{+} \mu-$

Daping Du (FNAL/MILC, J. Bailey et al, arXiv:1202.6346) calculate

$$
\frac{f_{0}^{(s)}\left(M_{\pi}^{2}\right)}{f_{0}^{(d)}\left(M_{K}^{2}\right)}=1.046(44)(15)
$$

using a subset of the full FNAL/MILC data set.
comparison with BaBar 2010 data (arXiv:0904.4063):

Form factor ratio $B_{s} \rightarrow D_{s} \ell \nu / B \rightarrow D \ell \nu \& B_{s} \rightarrow \mu^{+} \mu-$
Daping Du (FNAL/MILC, J. Bailey et al, arXiv:1202.6346) calculate

$$
\frac{f_{0}^{(s)}\left(M_{\pi}^{2}\right)}{f_{0}^{(d)}\left(M_{K}^{2}\right)}=1.046(44)(15)
$$

using a subset of the full MILC/FNAL data set.

Conclusions \& Outlook

- reliable LQCD results for "easy" quantities are here! reliable $=$ complete systematic error budget
- light quarks: several (many) results with different actions and methods, all in reasonable agreement.
- heavy quarks: dominated by HPQCD \& FNAL/MILC, with new results coming from other groups (RBC/UKQCD, ETMC, ALPHA, ...) soon.
- expect a large increase in computational resources (Bluegene Q, Blue Waters, GPU clusters,)
- three groups have already generated ensembles with light sea quark masses at their physical values
\Rightarrow expect to see an increasing number of physics results with these and an increasing number of such ensembles
- averages: LLV + FLAG-1 = FLAG-2 \Rightarrow use as inputs to UT fits

Conclusions \& Outlook

- LQCD is systematically improvable
- most sys. errors are constrained/determined by MC data
- Better precision is still needed in order to maximize the impact of flavor physics experiments
\Rightarrow constrain/discover/understand NP from the precision frontier
- As LQCD errors decrease with better simulations we'll need to include effects that are currently subdominant, for example:
\star isospin breaking
\star EM effects
\star charm sea quarks in progress ...
- Also in progress: Develop methods to reliably calculate quantities that are beyond "easy", for example:
* weak hadronic decays (kaon, D meson, B meson,...)
* non-local operators for D mixing
* weak decays to resonances (K^{*}, rho, ...)

Conclusions \& Outlook

- creativity can yield (hard to predict) progress, beyond expected improvements due to increase in computational resources, for example:
- z-expansion for shape of form factors
- development of HISQ action for heavy quarks
- HPQCD's method for calculating decay constants and form factors at $q^{2}=0$ using nonrenormalized currents
- twisted boundary conditions for calculating form factors directly at $q^{2}=0$

Appendix

- more on LQCD introduction \& achievements
- Glossary of actions:
light quarks heavy quarks
- Glossary of commonly used terms: quenched approximation, full QCD, rooted staggered Chiral PT,

LQCD: Current status

Many different groups, different actions, methods need to increase finite volume as pion mass decreases

LQCD Achievements: Predictions

Form factor shape for $D \rightarrow K l v$

Form factor shape for $D \rightarrow \pi l v$

(Phys. Rev. Lett. 94:011601, 2005)

- Normalization agrees with experiment plus CKM unitarity
-Prediction of the shape
also: B_{c} mass prediction (HPQCD+FNAL PRL 2005, hep-lat0411027)

LQCD Achievements: Predictions

$f_{D+} \quad D^{+}$meson decay constant

FNAL/MILC (PRL 2005, hep-lat/0506030

CLEO-c (PRL 2005, hep-ex/0508057)

Introduction to Lattice QCD

discretize the QCD action (Wilson, ...)
e.g. discrete derivative

$$
\partial_{\mu} \psi(x) \rightarrow \Delta_{\mu} \psi(x)=\frac{1}{2 a}[\psi(x+a \hat{\mu})-\psi(x-a \hat{\mu})]
$$

in general: $\quad\langle\mathcal{O}\rangle^{\text {lat }}=\langle\mathcal{O}\rangle^{\text {cont }}+O(a p)^{n} \quad n \geq 1$
errors scale with the typical momenta of the particles, e.g. $\left(\Lambda_{\mathrm{QCD}} a\right)^{n}$ for gluons and light quarks \Rightarrow keep $1 / a \ll \Lambda_{\mathrm{QCD}}$
typical lattice spacing $a \leqslant 0.1 \mathrm{fm}$ or $1 / a \gtrsim 2 \mathrm{GeV}$ in practice: need to consider a range of a 's

Introduction to Lattice QCD

L

discretize the QCD action (Wilson, ...)
e.g. discrete derivative

$$
\partial_{\mu} \psi(x) \rightarrow \Delta_{\mu} \psi(x)=\frac{1}{2 a}[\psi(x+a \hat{\mu})-\psi(x-a \hat{\mu})]
$$

in general: $\quad\langle\mathcal{O}\rangle^{\text {lat }}=\langle\mathcal{O}\rangle^{\text {cont }}+O(a p)^{n} \quad n \geq 1$
errors scale with the typical momenta of the particles, e.g. $\left(\Lambda_{\mathrm{QCD}} a\right)^{n}$ for gluons and light quarks \Rightarrow keep $1 / a \ll \Lambda_{\mathrm{QCD}}$
typical lattice spacing $a \leqslant 0.1 \mathrm{fm}$ or $1 / a \gtrsim 2 \mathrm{GeV}$ in practice: need to consider a range of a 's

Improvement: add more terms to the action to make n large

- Asqtad (improved staggered):
errors: $\sim \mathrm{O}\left(\alpha_{\mathrm{s}} a^{2}\right), \mathrm{O}\left(a^{4}\right)$, but large due to taste-changing interactions
has chiral symmetry; uses square root of the determinant in sea
computationally efficient
- HISQ (Highly Improved Staggered Action): also similar: HYP smeared
errors: $\sim \mathrm{O}\left(\alpha_{s} a^{2}\right), \mathrm{O}\left(a^{4}\right), \times 1 / 3$ smaller than Asqtad
comp. cost: efficicient, $\times 2$ Asqtad
- improved Wilson (Clover, ...): also Stout link smeared
errors: $\sim \mathrm{O}\left(\alpha_{s} a\right)$, if tree-level (tadpole) imp.; $\mathrm{O}\left(a^{2}\right)$ if nonpert. imp.
Wilson term breaks chiral symmetry
comp. cost: $\times 4$ Asqtad for $m_{\text {light }} \sim m_{\text {strange }}$, but less efficient at small quark masses
- twisted mass Wilson (tmQCD):
errors: ~ $\mathrm{O}\left(a^{2}\right)$
twisted mass term for quark masses at chiral limit
comp. cost: $\times 4$ Asqtad
- Domain Wall Fermions (DWF):
errors: $\sim \mathrm{O}\left(a^{2}\right), \mathrm{O}\left(m_{\text {res }} a\right)$
almost exact chiral symmetry; breaking $\sim m_{\text {res }} \sim 3 \times 10^{-3}$
comp. cost: $\times L_{5}$ Asqtad, $L_{5} \sim 16-20$
- Overlap Fermions:
errors: $\sim \mathrm{O}\left(a^{2}\right)$
exact chiral symmetry
comp. cost: $\times 5-10$ DWF
- relativistic HQ actions (Fermilab, Columbia, AKT,...)
start with $O(a)$ improved WIIson action
use HQET to analyze discretization errors
\Rightarrow no errors that increase as power of $a m_{Q}$
- NRQCD
start with effective theory, then discretize
power expansion in p / m or v
need to keep lattice spacing > 0
\Rightarrow use highly improved action with negligible discretization errors
needs scaling window to extrapolate errors due to light quark and gluon actions
- HQET/static
$1 / m$ expansion, static limit is the leading term
$1 / m$ corrections $\sim 10 \%$ included in HQET
- HISQ charm

HISQ action has very small discretization errors
\Rightarrow can be used for charm and heavier quarks, keep $a m_{Q}<1$

Glossary - sea quarks

- quenched approximation: no sea quarks, $n_{f}=0$
$\operatorname{det}(D+m)=$ const. \Rightarrow computational cost reduced by factor $\sim 100-1000$
but systematic errors ~ 10-30\% (for π 's K 's, ... particles without decay thresholds)
- unquenched: $n_{f} \neq 0$
simulation includes sea quarks, $\quad \operatorname{det}(D+m)$ included in integration
- $n_{f}=2$
two degenerate flavors of light quarks (for up and down) in sea, generally with $m_{l}>m_{u d}$ strange quark is still quenched
- $n_{f}=2+1$
two degenerate flavors (for u and d) plus one heavier sea quark (for s) with mass $\approx m_{s}{ }^{\text {phys }}$
- $n_{f}=2+1+1$
two degenerate flavors (for u and d) plus one heavier sea quark (for s) with mass $\approx m_{s}^{\text {phys }}$ plus one heavy sea quark (for c) with mass $\approx m_{c}^{\text {phys }}$
- partially quenched: $n_{f} \neq 0$ with $m_{\text {sea }} \neq m_{\text {valence }}$
sea quarks are computationally much more expensive than valence quarks
\Rightarrow one often generates several light valence quarks on each sea quark ensemble
use partially quenched ChPT; extremely useful for determining chiral parameters

Glossary con'td

- rooted staggered quarks
doubling problem $\Rightarrow 4$ "tastes" (degenerate lattice quark flavors) for every continuum flavor in the sea: $\quad \sqrt{\operatorname{det}(D D+m)} \Rightarrow$ two remaining tastes = two degenerate continuum flavors (u, d) $\sqrt[4]{\operatorname{det}(D+m)} \Rightarrow$ one remaining taste $=$ one flavor (s)
- Is rooted staggered lattice QCD = QCD ?
$\sqrt{\operatorname{det}(\not D+m)}$ is nonlocal at $a \neq 0$ (Bernard, Golterman, Shamir)
but there is a lot of evidence that nonlocality $\sim a^{2}$
based on renormalization group analysis (Shamir) and ChPT analysis (Bernard)
also a growing body of numerical checks (Dürr\& Hoelbling, Follana, Hart \& Davies, MILC, ..)
- rooted staggered chiral perturbation theory
accounts for the taste violations in the rooted staggered sea
\Rightarrow includes leading discretization effects, which can then be removed in continuum limit

[^0]: FLAG-2 update (G. Colangelo at Lattice 2012)

