

# Final State Interactions and Polarization Observables in the Process $\vec{p}p \rightarrow pK^+\Lambda$

BEACH 2012 | Matthias Röder for the COSY-TOF Collaboration

#### **Motivation**

#### pA Final State Interactions

- Study Hyperon-Nukleon Interactions:
  - Role of strangeness in hadron physics
  - Test SU(3) flavour symmetry in interactions
  - Prequisite sudies for hypernuclei
  - Astrophysics: Hyperon stars, stability of neutron stars
- Described by potential models and chiral effective field theory
- Polarized beam allows us the determination of the spin triplet scattering length (a<sub>t</sub>)

#### Λ Polarization Observables

- Study the  $pK^+\Lambda$  production mechanism
- Example: Polarized beam and self analyzing Λ decay allow to determine the Λ-depolarization ⇒ π or K exchange



- Low mass:  $X/X_0 \approx 0.02$  before stop detectors
- Scintillators for timing and dE/dx measurement
- Straw Tube Tracker (STT) and Silicon Quirl (SQT) for precise track reconstruction

#### pK<sup>+</sup>∧ Event Reconstruction and Selection



- Straw drift times <u>calibration</u> track-wire distances
- Delayed vertex with primary vertex in decay plane
- Complete kinematic fit to track-wire distances
- ⇒ 42 000 events from 6 days beam time (MC study: 20% reconstruction efficiency)

1

#### **Event Sample Check: A Decay Length**



- Data and MC in good quantitative agreement
- 100% acceptance marked with black lines
- Correct lambda lifetime ⇒ "low" background contamination



- Full kinematic acceptance and  $\sigma_m \approx 1 \text{ MeV/}c^2$  resolution
- Cusp structure at  $p\Sigma^0$  threshold in  $m_{p\Lambda}!$  ( $p\Lambda$ - $p\Sigma$  coupling)
- Cusp structure at KΣ<sup>0</sup> threshold in m<sub>KΛ</sub>?!
- FSI and *N*\*-resonances can explain structure underneath

#### $\Lambda$ Polarization $P_N$



- Self analyzing  $\Lambda$  decay  $\Rightarrow \Lambda$  polarization  $(P_N)$
- 61% polarized beam  $\Rightarrow \Lambda$  depolarization ( $D_{NN}$ ):



#### **A Depolarization**



- D<sub>NN</sub> forward agrees with DISTO M.Maggiora Nucl. Phys. A691
  - ⇒ Kaon exchange dominates production process in the Laget Model (N\*-Resonances neglected)
- Differences for backward \( \Lambda \)s
  - Trend to zero expected from gluon-exchange models
- More data needed

# p∧ Invariant Mass Spectrum



- Resolution  $\sigma \approx 1.1 \, \text{MeV}/c^2$
- Cusp at  $p\Sigma^0$  threshold (shape?, position?, strength?)
- p $\Lambda$  final state interaction at low  $m_{p\Lambda}$

9

#### p∧ Final State Interactions



- $\frac{1}{|\vec{p}_{p}-\vec{p}_{\Lambda}|}\frac{d\sigma^{2}}{dm_{p\Lambda}d\Omega} = |A_{eff}(m_{p\Lambda})|^{2} \propto \text{effective p}\Lambda \text{ scattering length}$
- Fit the shape of the effective scattering amplitude
- $\Rightarrow$  Effective pΛ scattering length  $a_{\text{eff}} = (-1.28 \pm 0.11 \pm 0.3)$  fm,
- Idea:  $|A_t|^2 \propto K^+$  P wave (in FSI region)

# **K**<sup>+</sup> Analyzing Power



- Kaon analyzing power for full mpA range
- Partial wave analysis with symmetric (S\*P waves) (red) and asymmetric (S\*D waves) (blue) contributions
- Symmetric part only from p\ spin triplet scattering
  - ⇒ Use for extraction of spin triplet scattering length

### Systematic Effect of N\* Resonances



- Full kinematical acceptance reveals N\* effects
- Result matches predictions:  $a_t \approx 1.8 \, \text{fm}$ ,  $a_s \approx 2.4 \, \text{fm}$  ( $_{\Lambda}\text{H}^3!$ )
- Next step: Model the  $m_{k\Lambda}^2$  dependence of systematics

# $K^+$ Analyzing Power: $m_{p\Lambda}$ Dependence



- $m_{p\Lambda} < m_0 + 40 \text{ MeV/}c^2$ : Analyzing power  $< 11\% (3\sigma)$ 
  - ⇒ High statistics needed for scattering length determination
- This dependence on  $m_{p\Lambda}$  is unexpected
  - Consistent with no spin triplet scattering at all [HIRES]
  - Other explanation: absence/cancellation of P wave
- Measurement with better statistics is important

# $pK^+ \Lambda$ Dalitz Plot $p_{beam} = 2.70 \text{ GeV/}c$



- Measured at p<sub>beam</sub> = 2.70 GeV/c
- FSI and phasespace dominate
  - ⇒ Cusp strength energy dependent (Not a phasespace effect)
  - ⇒ Ideal beam momentum for FSI studies

# $K^+$ Analyzing Power: $m_{p\Lambda}$ Dependence $p_{\text{beam}} = 2.70 \text{ GeV/}c$



- $m_{p\Lambda} < m_0 + 20 \text{ MeV/}c^2$ : Analyzing power  $\approx 15\%$ 
  - ⇒ scattering length determination in progress
- Effect of N\* will be studied at different beam momenta

#### **Conclusions and Outlook**

#### Conclusions

- COSY-TOF measures  $\vec{p}p \rightarrow pK^+\Lambda$  kinematically complete with high precision and polarized beam
- Determined Λ polarization observables especially the Λ depolarization
- Determined the effective p\ scattering length
  - Studied systematic effects of N\* resonances
  - Discovered an unexpected behavior of K<sup>+</sup> analyzing power

#### Outlook

- Upcoming: 6 weeks beam time at 2.95 and 3.3 GeV/c
  - Advanced studies of the cusp structures
  - Many more polarization observables available
- Determine the spin-triplet scattering length @2.7 GeV/c<sup>2</sup> with known systematic effect of N\* resonances

**BACKUP** 

# $pK^+\Sigma^0$ Background Study



- $pK^+\Sigma^0$  is broadly distributed under the signal peak
- $\chi^2$  of kinematic fit reduces contamination to < 5%