

Rare decays at LHCb

David Hutchcroft
University of Liverpool
on behalf of the LHCb collaboration

BEACH 2012, Witchita, Kansas July 23-28, 2012

Rare decays at LHCb

Results are presented for

$$B^{0}_{(s)} \to \mu^{+}\mu^{-}$$

 $B^{0}_{(s)} \to \mu^{+}\mu^{-}\mu^{+}\mu^{-}$
 $\tau^{-} \to \mu^{-}\mu^{+}\mu^{-}$
 $D^{0} \to \mu^{+}\mu^{-}$
 $B \to K^{(*)}\mu^{+}\mu^{-}$

- All results presented are on 1 fb⁻¹ at \sqrt{s} = 7 TeV data collected in 2011
 - Except $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ which used 0.9 fb⁻¹

$B_{(s)}^0 \to \mu^+ \mu^-$ expectation

In the standard model:

$$Br(B_s^0 \to \mu\mu) = (3.2 \pm 0.2) \cdot 10^{-9}$$

 $Br(B^0 \to \mu\mu) = (0.10 \pm 0.01) \cdot 10^{-9}$

JHEP 1010 (2010) 009, arXiv:1005.5310

Note: time integrated values, estimates at t=0 (above) must be increased by 10% to match measured values; arXiv:1204.1735v3

Expectation for branching ratio in a common non-universal Higgs mass Modified from arXiv:0907.5568

$$B_{(s)}^0 \to \mu^+ \mu^-$$
 selection

- Two tracks identified as muons that make a vertex separated from the primary vertex
- Use an MVA to reduce backgrounds:
 - A boosted decision
 tree with 9 variables based on the topology of the event

Impact

Paramete

Use MC to train the BDT and use the decay $B_{(s)}^0 \rightarrow h^+h'^+$ and sidebands to calibrate

Decay

Length

Backgrounds to selection

Peaking backgrounds are from $B^0_{(s)} \to h^+h'^-$ Non-peaking from $bb \to \mu^+\mu^- X$ and combinatorial muon candidates

Events / (50 MeV/c² $- \cdot \cdot \wedge_b \rightarrow [pK^-]cc$ 1000 → [K⁺π]cc ----Λ_b → [pπ]cc ---- comb 800 phys 600 400 200 5100 5200 5300 5400 m_{uu} (MeV/c²)

All BDT output, muon ID not applied

0.25<BDT<0.4, muon ID not applied

Signal events, normalisation and limits

$$N(B_{(s)}^{0} \to \mu^{+}\mu^{-}) \to \frac{\epsilon_{sig}}{\epsilon_{norm}} \frac{f_{d,s}}{f_{norm}} \frac{N_{norm}}{B_{norm}}$$

- The normalisation channel is $B^- \to J/\psi K^-$
- Use data driven methods to get the efficiencies
- measured at LHCb PRD85 (2012) 032008, arXiv:1111.2357 Expectation in 1.0 fb⁻¹

- Limits are set on the branching ratios at 95% CL
 - $B^0 \rightarrow \mu\mu$ 1.0 x 10⁻⁹ (expected 1.1 x 10⁻⁹ Bkg only)
 - $B_s^0 \rightarrow \mu\mu$ 4.5 x 10^{-9} (expected 7.2 x 10^{-9} SM + Bkg)
- Compatible with SM +Bkg within 1σ
 - p-value (1-CL_b) = 18%

Reference: PRL 108 (2012) 231801, arXiv:1203.4493

LHCb-CONF-2012-017 Upper Limits (95%C.L.):

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 8.1 \times 10^{-10}$

Preliminary limit combination

Limits on super-symmetric models

Prospects for a 3 σ observation of the SM branching ratio:

$$B_{(s)}^0 \to \mu^+ \mu^- \mu^+ \mu^-$$

Motivations

- PDG: $\mathcal{B}(B_s^0 \to J/\psi \phi \to \mu^+ \mu^- \mu^+ \mu^-) = (2.3 \pm 0.8) \times 10^{-8}$
- Other SM : $\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 10^{-10}_b$

Phys. Rev. D 70, 114028, (2004)

- Method : cut-and-count
 - Use resonant decays to optimise the selection
 - Use good secondary vertex reconstruction and muon ID
 - Normalise to $B_s^0 \to J/\psi(\mu^+\mu^-)\bar{K}^*(K^+\pi^-)$

$$B_{(s)}^0 \to \mu^+ \mu^- \mu^+ \mu^-$$

- Results
 - Events that are non-resonant, compatible with background expectations

Preliminary limits are set in LHCb-CONF-2012-010

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 1.3 \times 10^{-8}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.4 \times 10^{-8}$

First limits set on these modes

$$\tau^- \rightarrow \mu^- \mu^+ \mu^-$$

Motivation

- Evidence for lepton flavour violation
- Highly suppressed in the standard model

- An excess would indicate new physics
- $D_s^- o \phi(\mu^+\mu^-)\pi^-$ is used as a control channel and to normalise the branching ratio

Analysis

- Use two MVAs, then a fit to the τ and D_s^- masses
 - Do the tracks make a good secondary three track vertex?
 - Are the tracks good candidate muons or pions?

David Hutchcroft, BEACH2012

Limits on $\tau^- \rightarrow \mu^- \mu^+ \mu^-$

Expectation, 1 & 2 σ limits
Measured Limit

Using CL_s method the preliminary limits are

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 7.8(6.3) \times 10^{-8}$$

at 95% (90%) confidence level

LHCb-CONF-2012-015

World's best result was from Belle

PLB 687 (2010) 139, arXiv:1001.3221

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 2.1 \times 10^{-8} (90\% \text{ CL.})$$

$$D^0 \rightarrow \mu^+ \mu^-$$

Low SM expectation:

$$\mathcal{B}^{(\gamma\gamma)}(D^0\to\mu^+\mu^-)\approx 2.7\times 10^{-5}\cdot\mathcal{B}(D^0\to\gamma\gamma)$$

$$\mathcal{B}^{SM}(D^0 \to \mu^+\mu^-) \ge 10^{-13}$$
 Phys. Rev. D66 (2002) 014009

GIM mechanism suppresses the decay due to the lack of a heavy down quark

Use
$$D^{*+} \rightarrow D^0(\pi^+\pi^-)\pi^+$$
 as the control channel so:

$$\mathcal{B}(D^{0} \to \mu^{+}\mu^{-}) = \frac{N_{D^{*+}\to D^{0}(\to \mu^{+}\mu^{-})\pi^{+}}}{N_{D^{*+}\to D^{0}(\to \pi^{+}\pi^{-})\pi^{+}}} \frac{\varepsilon_{\pi\pi}}{\varepsilon_{\mu\mu}} \cdot \mathcal{B}(D^{0} \to \pi^{+}\pi^{-})$$

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$

Standard model decays have FCNC through electroweak loops.

Lots of angles to measure, most are sensitive to new physics in the loops

A good SM prediction for the zero point of A_{FB} for the muon system is at 4.0-4.3 GeV²/c⁴

$$B^0 \rightarrow K^{*0} \mu^+ \mu^-$$

LHCb preliminary measurement is

$$q_0^2 = (4.9^{+1.1}_{-1.3}) \,\text{GeV}^2/\text{c}^4$$

the first measurement of the crossing point

68% CL for unbinned crossing point Error bars on points are statistical only

Also look at the differential branching fraction normalised to $B^0 \to K^{*0} J/\psi$

Another 3 parameters are also fitted F_L , S_3 and S_9 Where theoretical predictions exist they are compatible with the SM

Isospin asymmetry in $B \to K^{(*)} \mu^+ \mu^-$

$$A_{l} = \frac{\mathcal{B}\left(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}\right) - \left(\frac{\tau_{0}}{\tau_{+}}\right)\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \left(\frac{\tau_{0}}{\tau_{+}}\right)\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

- A_l is the isospin asymmetry in the $B \to K^{(*)} \mu^+ \mu^-$ system
- τ_0/τ_+ is the ratio of B⁰ to B⁺ lifetimes
- Expected to be O(1%) in the SM

For $B \to K^* \mu^+ \mu^-$ the prediction is for positive at low q², dropping to small and negative as q² rises

Deficit seen in at low q²

Differential Branching ratio measurements

Isospin Asymmetry

Conclusion

- New upper limits set on $B_{(s)}$ to two and four muons, τ to three muons and D to two muons $\sim 1~{\rm fb^{-1}}$ of LHCb data
- No evidence for enhancement in any of these decays
- Angular distributions of $B^0 \to K^{*0} \mu^+ \mu^-$ were also tested, good agreement with SM
- Stringent limits placed on many models with new heavy particles
- Isospin 4.4 σ low for $B \to K \mu^+ \mu^-$, consistent with SM for $B \to K^* \mu^+ \mu^-$
- Expect to increase collected luminosity to over
 3.2 fb⁻¹ by the end of 2012
 - Then we could confirm the SM branching ratio for $B_s^0 \to \mu^+\mu^-$

Backups

LHCb muon triggers

- Level-0 trigger runs at 40MHz and selects muons, electrons, photons and hadrons from the Muon detectors and Calorimeters
- Double muon decays are prioritised for rare decay searches
 - Single muon trigger: p_T > 1.4 GeV/c
 - Double muon trigger: $p_{T1} > 0.56 \text{ GeV/c}$, $p_{T2} > 0.48 \text{ GeV/c}$

Simulated signal and backgrounds for $\tau^- \rightarrow \mu^- \mu^+ \mu^-$

The M₃ and M_{PID} MVA variables are evaluated in the bins marked by the vertical lines The correlations tuned to data are shown below

25

Angles in $B^0 \to K^{*0} \mu^+ \mu^-$

Helicity angle of the kaon wrt the K^* : θ_{κ}

Helicity angle of the μ^+ wrt the B : θ_l

Angle between decay plane of di-muons and K* : ϕ (folded to $\hat{\phi} = \phi + \pi$ if $\phi < 0$)

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \hat{\phi} \, \mathrm{d} q^2} &= \frac{9}{16\pi} \left[F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) \right. \\ &\quad F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) \right. \\ &\quad \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) \right. \\ &\quad \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2 \hat{\phi} \right. \\ &\quad \left. \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell \right. \\ &\quad \left. \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \sin 2 \hat{\phi} \right. \end{split}$$

Angular analysis of three body system, the 4 parameters fitted are highlighted above

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Table 2: Partial branching fractions of $B^0 \to K^0 \mu^+ \mu^-$ and isospin asymmetries of $B \to K \mu^+ \mu^-$ decays. The significance of the deviation of $A_{\rm I}$ from zero is shown in the last column. The errors include the statistical and systematic uncertainties.

q^2 range $[\mathrm{GeV^2\!/}c^4]$	$d\mathcal{B}/dq^2[10^{-8}/{\rm GeV^2\!/}c^4]$	$A_{ m I}$	$\sigma(A_{\rm I}=0)$
0.05 - 2.00	$1.1^{+1.4}_{-1.2}$	$-0.55^{+0.40}_{-0.56}$	1.5
2.00 - 4.30	$0.3^{+1.1}_{-0.9}$	$-0.76^{+0.45}_{-0.79}$	1.9
4.30 - 8.68	2.8 ± 0.7	$0.00^{+0.14}_{-0.15}$	0.1
10.09 - 12.86	$1.8^{+0.8}_{-0.7}$	$-0.15^{+0.19}_{-0.22}$	0.8
14.18 - 16.00	$1.1^{+0.7}_{-0.5}$	-0.40 ± 0.22	1.9
16.00 - 23.00	$0.5^{+0.3}_{-0.2}$	$-0.52^{+0.18}_{-0.22}$	3.0
1.00 - 6.00	$1.3^{+0.9}_{-0.7}$	$-0.35^{+0.23}_{-0.27}$	1.7

Table 3: Partial branching fractions of $B^+ \to K^{*+} \mu^+ \mu^-$ and isospin asymmetries of $B \to K^* \mu^+ \mu^-$ decays. The significance of the deviation of $A_{\rm I}$ from zero is shown in the last column. The errors include the statistical and systematic uncertainties.

q^2 range $[\mathrm{GeV^2\!/}c^4]$	$d{\cal B}/dq^2 [10^{-8}/{\rm GeV^2\!/}c^4]$	$A_{ m I}$	$\sigma(A_{\rm I}=0)$
0.05 - 2.00	$7.0^{+3.1}_{-3.0}$	$0.05^{+0.27}_{-0.21}$	0.2
2.00 - 4.30	$5.4^{+2.6}_{-2.4}$	$-0.27^{+0.29}_{-0.18}$	0.9
4.30 - 8.68	$5.7^{+2.0}_{-1.7}$	$-0.06^{+0.19}_{-0.14}$	0.4
10.09 - 12.86	$7.7^{+2.6}_{-2.4}$	$-0.16^{+0.17}_{-0.16}$	0.9
14.18 - 16.00	$5.5^{+2.6}_{-2.1}$	$0.02^{+0.23}_{-0.21}$	0.1
16.00 - 19.30	3.8 ± 1.4	$0.02^{+0.21}_{-0.20}$	0.1
1.00 - 6.00	$5.8^{+1.8}_{-1.7}$	-0.15 ± 0.16	1.0