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Abstract

Using 1.0 fb−1 of LHCb data, searches for the rare decays B0
(s) → µ+µ−, B0

(s) → µ+µ−µ+µ− and τ− → µ+µ−µ− are
presented. A search for D0 → µ+µ− using 0.9 fb−1 of LHCb data is also discussed. In the absence of an excess of
events, upper limits are set on each decay mode. Both the angular analysis of B0 → K∗0µ+µ− and a measurement of
the isospin asymmetries in B → K(∗)µ+µ− are made with 1.0 fb−1 of LHCb data. The measured angular and isospin
observables are presented as a function of the invariant mass of the muon pairs.
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1. Introduction

The LHCb detector [1] is a detector measuring pp
collisions at the Large Hadron Collider [2] in a unique
pseudo-rapidity range of 2 < η < 5. The detector
has a high precision vertex detector, four tracking sta-
tions, two RICH detectors, a dipole magnetic field, a
four layer calorimeter and a five layer muon system.

Rare decays of particles can be windows into higher
mass states, as variations from the Standard Model (SM)
expectations for decay rates and angular distributions
may indicate heavy particles in loops. In the absence
of an excess these measurements strongly constrain be-
yond the standard model theories. LHCb collected
1.0 fb−1 in 2011. The hardware stage of the LHCb
trigger [1] runs on every bunch crossing and the muon
triggers accept all events with one muon with pT >
1.5 GeV/c or two muons which satisfy

√
pT1 · pT2 >

1.3 GeV/c.

Each of the searches is done in a blinded fashion with
a control channel used to optimise the selection on data,
with the expected number of events (if any) set from the
SM prediction.

2. B0
(s)
→ µ+µ−

The decays of the B0
s and B0 to a pair of muons1

have a very small branching fraction in the SM, with
the prediction B(B0

s → µ+µ−) = (3.2 ± 0.2) · 10−9 and
B(B0 → µ+µ−) = (0.10 ± 0.01) · 10−9 [3, 4]. A search
for these decays was performed with 1.0 fb−1 of data
collected by LHCb [5]. The selection was based on
a 9 variable boosted decision tree (BDT) designed to
find a pair of opposite charged muons from a secondary
vertex, well separated to the primary vertex, and hav-
ing kinematics consistent with the expected decay. The
BDT was calibrated on B0

(s) → h+h′− (where h is a π
or K), without requiring the muon track identification,
to understand the peaking signal and background com-
ponents, and bb → µ+µ−X for the non-resonant back-
grounds.

The background for the selection was evaluated using
sidebands in m(µ+µ−) extrapolated into the signal region
for each bin in the BDT output. The results for BDT >
0.5 are shown in Fig 1.

The branching ratio is normalised to the rates of
B+ → J/ψK+, B0

s → J/ψφ and B0 → K+π− decays.

1Charge conjugation is assumed throughout.
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Figure 1: Distribution of data (points) for B0
s → µ+µ− (left) and

B0
s → µ+µ− (right) with the estimated signal (dark grey band) and

backgrounds overlaid. The darker gray bands on the B0 → µ+µ− plot
are cross-feed and the hatching indicates the uncertainty in the SM
expectation.

Mode Limit at 95% C.L.
B0

s → µ+µ− Exp. bkg + SM 7.2 · 10−9

Exp. bkg 3.4 · 10−9

Observed 4.5 · 10−9

B0 → µ+µ− Exp. bkg 1.1 · 10−9

Observed 1.0 · 10−9

Table 1: Expected and observed limits on the B0
(s) → µ+µ− decays.

The upper limits on the branching ratios are given in
Table 1.

A combination of this results with the other LHC
experiments CMS [6] and ATLAS [7] gives the lim-
its at 95% C.L. of B(B0

s → µ+µ−) < 4.2 · 10−9 and
B(B0 → µ+µ−) < 0.81 · 10−9 [8].

3. B0
(s)
→ µ+µ−µ+µ−

The decays of B0
s to four muons is expected to pro-

ceed through the resonant mode B0
s → J/ψφ with

B = (2.3 ± 0.9) · 10−8 [9]. The non-resonant de-
cays of B0 and B0

s to four muons are strongly sup-
pressed in the standard model with the branching frac-
tion not expected to exceed 10−10. LHCb has condud-
cted a search for these decays [10]. The resonant de-
cays B0

s → J/ψ(µ+µ−)φ(µ+µ−) and B0 → K∗J/ψ were
used to tune the selection. In total 6 events were re-
constructed which were compatible with B0

s → J/ψφ.
The invariant mass distribution of the non-resonant can-
didates is shown in Fig 2, with no events in the B0

s and
one in the B0 mass window. Limits can be set at the
95% C.L., which are B(B0

s → µ+µ−µ+µ−) < 1.3 · 10−8

and B(B0 → µ+µ−µ+µ−) < 5.4 · 10−9.
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Figure 2: Distribution of data (points) for the masses of non-resonant
µ+µ−µ+µ− final states. The blue (right) is the B0

s and the red (left) is
the B0 mass window.

4. D0 → µ+µ−

In the standard model the GIM mechanism sup-
presses the decay D0 → µ+µ− and it is expected to pro-
ceed almost exclusively via a long range interaction of
a two photon intermediate state. The expected rate is
B(D0 → µ+µ−) ≈ 2.7 · 10−5 × B(D0 → γγ). The exper-
imental limit on B(D0 → γγ) is 2.2 · 10−6 at the 90%
C.L. [11], which corresponds to a SM upper limit of
B(D0 → µ+µ−) < 6 · 10−11.

The decay was searched for in the LHCb data
[12], the reconstruction uses the decay chain D∗+ →
D0(µ+µ−)π+ using the mass difference between the D∗±

and the D0 as a strong background discriminant. D∗+ →
D0(π+π−)π+, D∗+ → D0(K+π−)π+ and J/ψ → µ+µ−

are all used as normalisation and control channels. The
primary peaking background is D0 → h+h′− with the
hadrons decaying in flight to muons. A multivariate
analysis to was applied to reduce the continuum back-
ground, predominately from semi-leptonic decays of b−
and c−hadrons, and a very tight particle identification
is used to reduce the peaking background. The signal
branching fraction is normalised to B(D0 → π+π−).

The distributions of ∆m = m(µµπ)−m(µµ) and m(µµ)
for the events passing the selection are shown in Fig. 3.
There is no excess above the expected background, so
an upper limit on the branching fraction is set at a 95%
C.L. of B(D0 → µ+µ−) < 1.3 · 10−8.

5. τ− → µ+µ−µ−

The lepton number violating decay of τ− → µ+µ−µ−

has been searched for in the LHCb data [13]. Since the
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Figure 3: Distributions of m(µµ) (upper) and ∆m (lower). The data are
shown as points with error bars. The solid curve is the fit, with the fol-
lowing components: the combinatoric background (grey dashed line),
D∗+ → D0(π+π−)π+ (dashed dark grey line) and the signal distribu-
tion D∗− → D0(µ+µ−)π− (pale grey solid line). The signal yield is
consistent with zero.

discovery of neutrino oscillation, lepton number violat-
ing decays are known to be possible in the SM, although
the expectation is that B(τ− → µ+µ−µ−) < 10−40.
Any measureable branching ratio would indicate new
physics (NP) processes. The control channel for this
decay is D+s → φ(µ+µ−)π+ which, like the signal, is
selected by a multi-variate analysis (MVA) tuned for
three track secondary vertices and a second MVA based
around the muon identification criteria. The final fit is
performed over the reconstructed mass of the τ−.

The final branching ratio is calculated using the for-
mula

B(τ− → µ+µ−µ−) =

B(D−s → φ(µ+µ−)π−)×
f τDs

B(D−s → τ−ντ)
×
εcal

εsig
×

Nsig

Ncal
,

(1)

where f τDs
is the fraction of τ− leptons originating from

D−s decays, estimated from the cc and bb cross-sections
measured at LHCb [14, 15] and the inclusive B(c →
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Figure 4: The observed data (points) for the reconstructed τ− mass
in the four highest signal fraction MVA bins (upper) and four next-
highest bins (lower). The solid line is the combined PDF of the back-
ground, with the combinatoric (dashed) and D−s → η(µ+µ−γ)µ−νµ
(fine dotted) components shown. The signal region was excluded
when fitting for the background PDF shapes.

τ−X) and B(b → τ−X) from LEP measurements [9].
The rate of τ− leptons from D−s decays was taken from
[16], and the B(D−s → φ(µ+µ−)π−) is calculated from
B(D−s → φ(K+K−)π−) [17] and the correction for the
ratio B(φ → µ+µ−)/B(φ → K+K−). εcal/εsig is the
efficiency ratio of the control channel and the signal,
Nsig/Ncal is the ratio of reconstructed signal and control
channel events.

The data is split into five equal occupancy bins in
both of the MVA outputs, then fit for the expected signal
fraction and backgrounds in each of the 25 bins. Fig. 4
shows the backgrounds and signal regions for the most
signal enhanced part of the data. In the absence of an
excess over the background a limit is set at the 95(90)%
C.L. of B(τ− → µ+µ−µ−) < 7.8(6.3) · 10−8, which is
a long way above the expected SM rate. This does not
improve the limit of 2.1 · 10−8 at 90% C.L. set by BaBar
[18].
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6. Isospin of B → K(∗)µ+µ−

The decay B → K(∗)µ+µ− provides a sensitive test
of the physics of flavour changing neutral currents that
occur in electro-weak loops. By measuring the isospin
asymmetry in the decay B → K(∗)µ+µ− and the angular
dependence of the decay B0 → K∗0µ+µ−, as a func-
tion of the invariant mass of the muon system (q2), con-
straints on NP processes can be set based on their inter-
action structure, in a relatively model independent way.

In this decay the isospin asymmetry is defined as

AI =
B(B0 → K(∗)0µ+µ−) − τ0

τ+
B(B+ → K(∗)+µ+µ−)

B(B0 → K(∗)0µ+µ−) + τ0
τ+
B(B+ → K(∗)+µ+µ−)

(2)
where B(B → f ) are the branching fractions of the de-
cays while τ0/τ+ is the ratio of the lifetimes of the B0

and B+. The SM prediction for AI is around 1% for the
q2 region below the J/ψ resonance, rising to O(10%) as
q2 approaches zero [19].

The isospin asymmetries are determined [20] by
measuring the differential branching ratios of B0 →

K0
S µ
+µ−, B+ → K+µ+µ−, B0 → K∗0(K+π−)µ+µ− and

B+ → K∗+(K0
S π
+)µ+µ−. The decays with K0

L and π0

in the final states are not reconstructed and corrections
are applied for the missing modes. Each selection is
normalised to the corresponding B → J/ψK(∗) channel,
with the correction for the ratio of the efficiencies, as a
function of q2, taken from the Monte Carlo (MC). The
selections are optimised on MC events, with corrections
applied where differences between data and MC arise.

The differential B for B0 → K0µ+µ− and B+ →
K∗+µ+µ− are shown in Fig. 5, along with the theoretical
estimates of the branching ratios. The isospin asymme-
tries for B → Kµ+µ− and B → K∗µ+µ− are plotted in
Fig. 6. For B→ K∗µ+µ− the result is consistent with the
very small SM expectation, in the case of B → Kµ+µ−

the measurement is measured to be mostly negative with
a significance of 4.4σ from zero when integrated across
q2, consistent with previous experiments.

7. Angular analysis of B0 → K∗0µ+µ−

The full differential analysis of the decay B0 →

K∗0µ+µ− involves the following angles and variables
[24]: θK is the helicity angle of the K∗, θ` is the helicity
angle of the muon pair, φ̂ is the folded angle between
the dimuon and K∗ decay planes2, FL is the transverse
asymmetry, AFB is the forward/backward asymmetry in

2φ̂ is defined so that φ̂ = φ + π if φ < 0 and φ̂ = φ otherwise
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Figure 5: Differential branching ratios for B0 → K0µ+µ− (upper) and
B+ → K∗+µ+µ− (lower). The theoretical predictions are taken from
Refs. [21, 22].

the dimuon system, S 3 is the transverse asymmetry and
S 9 is the CP average of AIm.

These are fitted using the following formula

1
Γ

d4Γ

d cos θ` d cos θK dφ̂ dq2
=

9
16π

[
FL cos2 θK +

3
4

(1 − FL)(1 − cos2 θK) −

FL cos2 θK(2 cos2 θ` − 1) +

1
4

(1 − FL)(1 − cos2 θK)(2 cos2 θ` − 1) +

S 3(1 − cos2 θK)(1 − cos2 θ`) cos 2φ̂ +

4
3

AFB(1 − cos2 θK) cos θ` +

S 9(1 − cos2 θK)(1 − cos2 θ`) sin 2φ̂
]
.

(3)

The zero-point crossing of the forward/background
asymmetry can be sensitive to new physics, Fig. 7 shows
the measurement of the q2

0 point. The unbinned estima-
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Figure 6: Isospin asymmetries for B → Kµ+µ− (upper) and B →
K∗µ+µ− (lower). The theoretical predictions for B → K∗µ+µ− are
taken from Ref. [23].

tion of this quantity is fitted from the data and measured
to be q2

0 = (4.9+1.1
−1.3) GeV2/c4, this is consistent with the

predictions from the SM [21]. Plots of the four fitted
parameters as a function of q2 are shown in Fig. 8.

8. Conclusion

Searches for rare decays in LHCb have been per-
formed for the decays of B0

s , B0 and D0 to a pair of
muons, the lepton flavour changing decay of τ± to three
muons and B0

s or B0 to four muons. In all cases the data
were compatible with the SM backgrounds and upper
limits are placed on the branching ratios of these decays.
Each measurement constrains NP models that postulate
heavier particles which would increase the observed B.

The isospin asymmetry of the decays of B→ Kµ+µ−

have been measured, for the decays to K∗µµ the data
confirm the near zero expected SM asymmetry, for the
Kµµ decays the data shows an overall negative asymme-
try with 4.4σ significance from zero. The angular anal-
ysis of B0 → K∗0µ+µ− looked at four parameters in the
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Figure 7: The AFB as a function of q2, that comes from the unbinned
counting experiment (blue dashed line) overlaid with the theory pre-
diction from Ref. [21]. The uncertainty on the data-points is statistical
only. The red-hatched region is the 68% confidence interval on the
zero-crossing point observed in the data.

decay as a function of q2 and these are compatible with
the SM predictions. The first measurement of the cross-
ing point of AFB has been made, q2

0 = (4.9+1.1
−1.3) GeV2/c4,

which is compatible with the SM and not offset as sev-
eral NP models predicted.
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