

IceCube/DeepCore and IceCube/PINGU: Prospects for Few-GeV Scale ν Physics in the Ice

Tenth International Conference on Hyperons, Charm and Beauty Hadrons BEACH 2012 July 23-28, 2012 Wichita, KS, USA

> Doug Cowen IceCube and PINGU Collaborations and Department of Physics Penn State University

Outline

- Neutrino oscillations
- IceCube/DeepCore
 - Design, geometry
 - Performance
 - Physics goals, first results
- Future plans
 - PINGU*
 - Possible design, geometry
 - Physics goals

*Precision IceCube Next-Generation Upgrade

The IceCube Collaboration

University of Alberta

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University** Pennsylvania State University Southern University and A&M College Stony Brook University University of Alabama University of Alaska Anchorage University of California-Berkeley **University of California-Irvine** University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

Uppsala Universitet

Stockholm University

University of Oxford

Ecole Polytechnique Fédérale de Lausanne University of Geneva

> **Jniversité Libre** Université de Mons **University of Gent** Vrije Universiteit Brussel

University of the West Indies

Deutsches Elektronen-Synchrotron Humboldt Universität Max-Planck-Institut für Kernphysik-Heidelberg **Ruhr-Universität Bochum RWTH Aachen University** Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Chiba University

University of Adelaide

University of Canterbury

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG) **Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation** Swedish Polar Research Secretariat

The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) **US National Science Foundation (NSF)**

• Measuring the PMNS matrix

- Some observations and some questions:
 - Neutrino mass is clear evidence that the Standard Model of particle physics is incomplete.
 - Thus-far-unmeasurable lightness of neutrinos may be indicative of new physics at E $\sim 10^{15}~{\rm GeV}$ scale.
 - Are there more than 3 generations of fundamental particles?
 - Why are quark mixing parameters so different from those of neutrinos?
 - Very recently an important matrix element of neutrino mixing was measured.
 - Daya Bay and RENO found fairly large θ_{13} at $\sim 5\sigma$
 - Opens door to other fundamental measurements with neutrinos
 - What is the neutrino mass hierarchy? (Is v_3 heaviest or lightest?)
 - CP violation in lepton sector could explain matter-antimatter asymmetry.
- Atmospheric neutrinos v. useful for studying neutrino oscillations.
 - Can't control them, but "You can observe a lot by just watching."-Y. Berra

IceCube and DeepCore

Doug Cowen

Overhead View

DeepCore Geometry

- Eight special strings plus 12 nearby standard IceCube strings
 - 72 m interstring horizontal spacing (six with 42 m spacing)
 - 7 m DOM vertical spacing
 - ~40% higher Q.E. PMTs
 - ~5x higher effective photocathode density (but still only ~0.1% coverage)
 - DOMs: ~few ns timing, 0.25 p.e. threshold
- Roughly 30 MTon physical volume
 - ~10 GeV threshold
 - $\mathcal{O}(200k)$ atmospheric ν /yr

DeepCore: Effective Volume

- Many ν and μ events in IceCube will also trigger DeepCore
 - These events are rejected by the online veto algorithm
- Below $\sim\!100$ GeV, DeepCore improves V_{eff} significantly
- Final V_{eff} will be lower than shown once we require good event reconstruction

DeepCore Physics

- •Atmospheric neutrinos
 - DeepCore gives access to a previously unexplored and physics-rich neutrino oscillation energy regime
 - muon neutrino disappearance at ~25 GeV (and ~8 GeV)
 - tau neutrino appearance at ~25 GeV
 - Enables high-statistics study of oscillations at higher energies than with accelerators

First Result from DeepCore

- Isolation of atmospheric $\nu\text{-induced}$ ''cascade'' sample (ν_{e} CC, ν_{x} NC)
- 1029 events:
 - 59% cascade
 - 41% ν_{μ} CC
- ~5x enrichment of cascade sig.: [casc/trk]_{veto} / [casc/trk]_{final} (without reconstructions)
- ~10⁸ downwardgoing cosmic ray muon rejection factor
- Average energy: ~200 GeV
- Paper being written
- Loosening cuts: see $v_{\mu} \rightarrow v_{\tau}$ a la SK?

Doug Cowen

First Result from DeepCore

(Standard hit cleaning algorithm removed all noise hits in rest of detector.)

Second Result from DeepCore

- Looked for (expected) atmospheric v_µ oscillations at highest energies ever
- Oscillations seen
- Analysis was not designed to measure oscillation parameters
 - Ruled out nodisappearance hypothesis

Second Result from DeepCore

- Looked for (expected) atmospheric v_µ oscillations at highest energies ever
- Oscillations seen
- Analysis was not designed to measure oscillation parameters
 - Ruled out nodisappearance hypothesis

Third Result from DeepCore?

5000

4000

3000-

2000-

1000-

Events per 30.66 days

- Loosen cascade analysis cuts for possible sensitivity to ν_{τ} appearance
 - $P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{\tau}) \propto |\bigcup_{\tau 3}|^2$
 - test for unitarity
 - do the three fractions of ν_{e,µ,τ} making up ν₃ sum to 1.0?
- Lots of statistics
 - ~I month shown; ~25x more data in hand
 - Key: control of systematics
- Similar to SuperK msmt.
 - PRL 97:171801 (2006)
 - ''disfavors the no tau neutrino appearance hypothesis by 2.4 sigma''

Beyond DeepCore

- •DeepCore's early results show the feasibility and promise of doing fundamental neutrino physics at the 10 GeV energy scale
- •More interesting DeepCore results are in the works (v_{τ} appearance, WIMP searches,...)
- •What if we could go lower in energy?

The Next Step: PINGU

- Further increase sensor density
 - ~20 additional strings
 - Mostly IceCube technology plus some R&D modules
 - Include new low-E calibration devices
 - Aims:
 - Physics program at $E_{thr} \sim few \; GeV$
 - Neutrino hierarchy
 - Low mass WIMPs
 - R&D: Cherenkov ring segment reconstruction
 - Calibrate for light levels at E \sim 1 GeV
- Collaboration
 - IceCube, U.M.-Duluth, U. Erlangen, T.U.-Muenchen, NIKHEF, U. Wuerzburg

PINGU Effective Volumes

• V_{eff} increased by ~8x at ~1 GeV relative to DeepCore

17

Simulated PINGU Events

• 9.3 GeV neutrino

- 4.4 GeV initial cascade, 4.9 GeV muon
- Physics hits only (no noise)

Simulated PINGU Events

• 9.3 GeV neutrino

- 4.4 GeV initial cascade, 4.9 GeV muon
- Physics hits only (no noise)

Neutrino Hierarchy

- "Sign" of the hierarchy can discriminate among unification theories
- Hierarchy can be determined as neutrinos pass through matter
 - ν oscillation probability is enhanced if hierarchy is <u>normal</u>
 - $\overline{\mathbf{v}}$ oscillation probability is enhanced if hierarchy is inverted
 - and: $\nu, \overline{\nu}$ have different cross sections

Neutrino Hierarchy

- "Sign" of the hierarchy can discriminate among unification theories
- Hierarchy can be determined as neutrinos pass through matter
 - ν oscillation probability is enhanced if hierarchy is <u>normal</u>
 - $\overline{\mathbf{v}}$ oscillation probability is enhanced if hierarchy is inverted
 - and: $\nu, \overline{\nu}$ have different cross sections

Neutrino Hierarchy

 \bullet Nova and T2K

• Can avoid degeneracy with atmospheric neutrinos & parametric resonances

Neutrino Hierarchy and Parametric Resonances

- Parametric resonances can occur as neutrinos cross regions of distinct density
 - Flavor transitions enhanced due to matter-induced modifications in oscillation <u>phase</u>
 - (MSW occurs through modifications in neutrino mixing <u>angle</u>)
 - If travel through periodically varying density, transition probabilities can add up and become large, but generally speaking need lots of periods
- Relevant Exception: For matter densities close to MSW resonance densities, can have parametric enhancement of oscillations with a very small number of periods
 - This is the case for Earth and neutrinos at \sim 5 GeV(!!) and
 - The character of the effect depends strongly on the hierarchy. 🙂

E. Kh. Akhmedov, Pramana 54:47-63,2000 or hep-ph/9907435

Neutrino Hierarchy and Parametric Resonances

Impact of δ_{CP} negligible. Study by IceCube collaboration with full detector simulation and reconstructions underway.

Akhmedov, Razzaque, Smirnov. arXiv:1205.7071v2

 $\Delta m_{32}^2 = 2.35 \times 10^{-3}$ $\Delta m_{21}^2 = 7.6 \times 10^{-5}$ $\sin^2\theta_{23} = 0.42$ $\sin^2 \theta_{12} = 0.312$ $\sin^2 \theta_{13} = 0.025$

Neutrino Hierarchy and Parametric Resonances

Impact of smearing: summed significance drops to 10σ (no systematics), 7σ (5% uncorr. syst.), 4.5σ (10% uncorr. syst.).

Impact of δ_{CP} negligible. Study by IceCube collaboration with full detector simulation and reconstructions underway.

Akhmedov, Razzaque, Smirnov. arXiv:1205.7071v2

© [2011] The Pygos Group

PINGU: Possible Timeline

Conclusions

- DeepCore has much promise at the 10-100 GeV scale
 - atmospheric neutrino oscillations
 - WIMP dark matter
 - southern sky sources, exotica,...
- PINGU could reach to a few GeV
 - can be built quickly, reliably and relatively cheaply
 - will improve on many DeepCore measurements, and perhaps measure hierarchy with atmospheric neutrinos
 - with beam, PINGU could measure hierarchy (and possibly also CP)
 - perform R&D for future lower energy detector ("MICA") with possible sensitivity to
 - proton decay
 - SN neutrinos ~<u>annually</u>
 - New members welcome!

The End

Backup slides follow

High P_T Muons

- Study transverse structure of hadronic interactions in cosmic ray interactions
 - •Tracer: high-P_T muons
 - •MACRO analysis (PRD 60 032001)
 - less than 70 m lateral separation of muons
 - parent mesons with $P_T < I-2$ GeV/c
 - IceCube (with IceTop):
 - greater than ~200 m lateral separation
 - parent mesons with $P_T > \sim 8 \text{ GeV/c}$

High P_T Muons

- •Sample data event
 - 233 m and 3.7° separation
- •Geometry:
 - 125 m horizontal string separation
 - 17 m vertical module separation

High P_T Muons

- •At $P_T \sim 2$ GeV/c, expect to see a transition from soft to hard interactions
 - •Soft: exponential spectrum, $exp(-P_T/T)$
 - T \sim 220 MeV for pions
 - •Hard: power law spectrum, $(I + P_T/P_o)^{-n}$

• $P_o \sim 1.9 \text{ GeV/c; } n \sim 13$

•Search for this transition to pQCD regime in high P_T muons in IceCube

Preliminary Results

- Lateral separation
 - $d_T = \frac{p_T H c}{E_\mu \cos \theta}$
 - Final sample has 35k events on a background of ~450; mean CR primary energy 10⁶ GeV
- Best fit crossover point at 310 m separation
- See APS 2012 talk by L. Gerhardt for more details; paper in the works

Neutrino Hierarchy & Models

The hierarchy is a good model discriminator:

Table courtesy W.Winter

TABLE I: Mixing Angles for Models with Lepton Flavor Symmetry.

Referen	nce	Hierarchy	$\sin^2 2\theta_{23}$	$\tan^2 \theta_{12}$	$\sin^2 heta_{13}$
Anarch	y Mo	odel:			
dGM	[18]	Either			≥ 0.011 @ 2σ
$\mathbf{L}_{\mathbf{e}} - \mathbf{L}_{\mu} - \mathbf{L}_{\tau}$ Models:					
BM	[35]	Inverted			0.00029
BCM	[36]	Inverted			0.00063
GMN1	[37]	Inverted		≥ 0.52	≤ 0.01
GL	[38]	Inverted			0
\mathbf{PR}	[39]	Inverted		≤ 0.58	≥ 0.007
S ₃ and S ₄ Models:					
CFM	[40]	Normal			0.00006 - 0.001
HLM	[41]	Normal	1.0	0.43	0.0044
		Normal	1.0	0.44	0.0034
KMM	[42]	Inverted	1.0		0.000012
MN	[43]	Normal			0.0024
MNY	[44]	Normal			0.000004 - 0.000036
MPR	[45]	Normal			0.006 - 0.01
RS	[46]	Inverted	$\theta_{23} \ge 45^{\circ}$		≤ 0.02
		Normal	$\theta_{23} \le 45^{\circ}$		0
TY	[47]	Inverted	0.93	0.43	0.0025
Т	[48]	Normal			0.0016 - 0.0036
A ₄ Tetrahedral Models:					
ABGMF	P [49]	Normal	0.997 - 1.0	0.365 - 0.438	0.00069 - 0.0037
AKKL	[50]	Normal			0.006 - 0.04
Ma	[51]	Normal	1.0	0.45	0
SO(3) I	Mode	ls:			
М	[52]	Normal	0.87 - 1.0	0.46	0.00005
Texture Zero Models:					
CPP	[53]	Normal			0.007 - 0.008
		Inverted			≥ 0.00005
		Inverted			≥ 0.032
WY	[54]	Either			0.0006 - 0.003
		Either			0.002 - 0.02
		Either			0.02 - 0.15
			1	1	1

Ice Properties

- Depth dependence of λ_{eff} and λ_{abs} from *in situ* LEDs
- Ice below 2100 m in DeepCore fiducial region very clear
 - $<\lambda_{eff}> \sim 47$ m, $<\lambda_{abs}> \sim 155$ m

Ice Properties

- Depth dependence of λ_{eff} and λ_{abs} from in situ LEDs
- Ice below 2100 m in DeepCore fiducial region very clear
 - < λ_{eff} > ~ 47 m, < λ_{abs} > ~ 155 m

• Constant temperature \sim -35C

Even Better: PINGU + ν -Beam

- A neutrino beam can also exploit parametric resonances and
 - Can enable hierarchy determination with <u>much less</u> <u>dependence</u> on detector performance

Figures courtesy W.Winter

PINGU + ν -Beam

- Distances from labs to PINGU (and other experiments)
 - All baselines to PINGU cross Earth's outer core

Specific Example: FNAL to PINGU

- Parametric enhancement due to mantlecore-mantle profile can be exploited at convenient neutrino energies
 - (The beam angle is somewhat less convenient)
- Strong dependence on hierarchy
 - Since $\sigma(v) \sim 2\sigma(\overline{v})$:
 - N_{ev}(NH)~2N_{ev}(IH) at 2-10 GeV
 - $\delta_{CP} = 0$ looks similar

PINGU Effective Volume

- A few MTon fiducial mass for superbeam made by FNAL main injector protons at 120 GeV
 - makes lots of 2-5 GeV neutrinos
 - can use low intensity beam (shorter decay pipe)
- N.B.: At trigger level, without selection criteria or reconstruction inefficiencies
 - Ultimate effective (a.k.a. fiducial) volume will be smaller

Figure courtesy J. D. Koskinen and W. Winter. For more details, see Tang and Winter, JHEP 1202 (2012) 028.

The Hierarchy with PINGU + ν -Beam

- Assumptions:
 - 20% ν_{μ} CC misID
 - No energy resolution
 - A counting experiment!
 - Include irreducible
 backgrounds
 - intrinsic beam, NC events, v_{τ}
 - signal & bkgd.
 systematics
 uncorrelated
- Conclusions:
 - I 8σ effect (stat. only)
 - With particle ID, might be also sensitive to CP

NUMI beam at 10²¹ PoT

	Normal hier.	Inv. hierarchy
Signal	1560	54
Backgrounds:		
v _e beam	39	59
Disapp./track mis-ID	511	750
v_{τ} appearance	3	4
Neutral currents	2479	2479
Total backgrounds	3032	3292
Total signal+backg.	4592	3346

Table courtesy W.Winter. See also Tang and Winter, JHEP 1202 (2012) 028.