

Chrs

Development of Intraoperative Beta Probes based on Silicon Photomultipliers

N. Hudin^a, L. Pinot^a, N. Dinu^b, S.Callier^c, L.Raux^c, D.Benoît^a, N.Junius^a, M.Chikhi^a, Y. Charon^a, B. Janvier^a, M-A. Duval^a, L. Ménard^a IN2P3 ^a Laboratoire Imagerie et Modélisation en Neurobiologie and Cancérologie (UMR 8165). Campus d'Orsay. 91406 Orsay Cedex. France. ^b Laboratoire de l'Accélérateur Linéaire. IN2P3-CNRS. 91898 Orsay. France. ^c Pôle Omega, L.A.L.

Introduction

Inside body delineation of tumor boundaries labeled with positron emitters opens up new prospective to help surgeons to discriminate with higher sensitivity malignant tissues from surrounding normal tissues [1,2]. Among the alternative photosensors that have been developed and implemented during the last ten years. Silicon Photomultipliers (SiPM) have the potential to notably impact the performances of future intraoperative devices [3].

The key features when trying to localize small amount of tumor tissue labeled with positron are the sensitivity, γ ray rejection efficiency and compactness. To achieve efficient rejection of the background noise coming from the high flux of 511keV annihilation γ rays while maintaining the small overall dimensions of the probes, we chose to implement real-time subtraction schemes: gamma contamination is estimated by a detector shielded to beta particles and then subtracted from the count rate measured by the beta-sensitive detector (after being scaled by a suitable weighting factor) to obtain an estimate of the pure beta signal.

We present here our first results on the development of two different intraoperative beta probes based on SiPM:

- A light imaging device with a small field of view (~5cm²) to perform tumor localization and post-operative control of the surgical cavity.
- A miniaturized counting probe to guide in real time the excision of the tumor lesion. To facilitate a more complete and accurate excision of tumor tissue, the counting probe will be especially built to be directly coupled to an excision tool (ultrasonic aspirator or electrocautery).

Conclusion and perspectives

- Different designs of a positron imaging probe using SIPM photosensors were simulated.
 First configuration based on the stack of two SIPM arrays offers very good imaging performances and gamma ray rejection ability.
- Second configuration allows to reduce the size and the cost of the probe but further optimizations are necessary to improve the trade-off between the accuracy on the layer identification and the spatial performances
- · Further optimizations will include the use of new position algorithms and optical coatings First measurements on scintillating fibre-SIPM assembly show that for a beta counting probe, good detection efficiency can be achieved
- Bogalhas F et al., Phys. Med. Biol., vol. 54, 2009. [2] Garcia-Parra R et al., Ann. Nucl. Med., vol. 25, 2011.
 Hudin N et al., Nucl. Instr. and Meth.,