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Introduction 
Inside body delineation of tumor boundaries labeled with positron emitters opens up new prospective to help surgeons 
to discriminate with higher sensitivity malignant tissues from surrounding normal tissues [1,2]. Among the alternative 
photosensors that have been developed and implemented during the last ten years, Silicon Photomultipliers (SiPM) 
have the potential to notably impact the performances of future intraoperative devices [3].  

The key features when trying to localize small amount of tumor tissue labeled with positron are the sensitivity, γ ray 
rejection efficiency and compactness. To achieve efficient rejection of the background noise coming from the high flux 
of 511keV annihilation γ rays while maintaining the small overall dimensions of the probes, we chose to implement real-
time subtraction schemes: gamma contamination is estimated by a detector shielded to beta particles and then 
subtracted from the count rate measured by the beta-sensitive detector (after being scaled by a suitable weighting 
factor) to obtain an estimate of the pure beta signal.  

We present here our first results on the development of two different intraoperative beta probes based on 
SiPM: 

•  A light imaging device with a small field of view (~5cm2) to perform tumor localization and post-
operative control of the surgical cavity. 

•  A miniaturized counting probe to guide in real time the excision of the tumor lesion. To facilitate a 
more complete and accurate excision of tumor tissue, the counting probe will be especially built to be 
directly coupled to an excision tool (ultrasonic aspirator or electrocautery). 
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Configuration Light guide 
thickness (mm) 

FWHM (mm) 
[min-max] 

Bias (mm) 
[min-max] 

1 0 0.4 [0.27-0.57] 0.3 [0-0.64] 
1 0.5 0.44 [0.37-0.51] 0.38 [0-0.93] 
1 1 0.45 [0.43-0.49] 0.52 [0-1.23] 
1 2 0.51 [0.47-0.55] 0.83 [0.1-1.81] 
2 0.5 0.45 [0.41-0.49] 0.51 [0.1-1.22] 
2 1 0.5 [0.45-0.57] 0.63 [0-1.45] 
2 2 0.53 [0.46-0.59] 0.95 [0-2.04] 
2 3 0.6 [0.51-0.71] 1.18 [0.1-2.48] 
2 4 0.63 [0.52-0.73] 1.4 [0.1-2.84] 

•  Detection elements composed of 0.5mm-thick 
piece of scintillating fiber fused to a 10cm-
long clear fiber. 

•  Detection elements held around the excision 
tool in a close packed annular arrangement. 

•  Each detection element is individually 
optically coupled to a 3x3 mm2 SiPM device 
(S10362-11, Hamamatsu). 

•  Gamma contamination is measured by one or 
two fibres shielded to beta particles with a 
thin sheet of stainless steel. 

•  Light distribution standard deviation for 511 keV gamma ray events 
interacting at the centre of each scintillator (error bars represent the FWHM 
of each light spread) 

•  Events originating from the two layers can be identified when the light guide 
thickness is larger than 2 mm. 

•  For a 2mm-thick light guide, the identification error is around 12% with a 
mean value of 16% on the whole field of view. 

Average spatial resolution (FWHM) and bias on the estimation of 
the X/Y position for the two configurations of the imaging probe. 
The spatial performances are given for the top scintillator. 

•  Two background subtraction schemes are investigated, based on the use of one or two read-out detectors. 

•  For both configurations, two 0.5 mm-thick plastic scintillators are used for detection : the front detector is for 
beta particles detection  and the rear detector is for the estimation of the background gamma noise. 

•  Light measurement is made by one or two photodetection SiPM-module based on four 16-channel monolithic 
SiPM arrays composed of 3 x 3mm² elements (Hamamatsu. S11828-3344M)  
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One SiPM array for both scintillator. Events originating 
from the two layers are discriminated from the analysis 
of the width of the light distribution on the photosensor.  

Configuration 1 Configuration 2 

•  Error bars represent the maximum variation of the counting 
rate measured for different background gamma ray source 
distributions. 

•  Rejection efficiency close to  98 % can be achieved when 
the gap between the front and the rear detector is between 
0.5 and 4 mm.  

•  The subtraction method is nearly insensitive to the variation 
in the background γ ray distribution. 
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Brain phantom : 14cm Ø x 10cm cylinder 
Surgical cavity : 3 cm inner diameter 

Cancerous tissue : 
6mm Ø x 1mm cylinder 

Two steps simulation: 
•  Brain phantom emits 511keV gamma rays. The count 

ratio between the two scintillators gives the weighting 
factor. 

•  Cancerous tissues emits 18F positrons.  

After subtraction of the estimated gamma 
contamination, 

error on the true positron counting rate is calculated for 
each tumor depth. 

Monte Carlo simulation 
(GATE): 

Gamma or Beta radiation transport 
Propagation of scintillation light 
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SiPM Response      
simulation (ROOT): 

ntrigTotal (xpix. ypix) = f(PDE. nf. DCR) 

nph nprim ntrig ntrigTotal 
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Distribution 
P(k) = εk-1  

with 

P(k) = exponential distribution 
probability of the total number k of 
cells fired by a primary Geiger 
discharge with an expectation 
value equal to nf (ε is the crosstalk 
and afterpulses probability) 

nph(xpix. ypix) = number of optical 
photons per interaction event collected 
on each SiPM pixel 

PDE = Photon Detection Efficiency 

nprim = number of primary fired cells  

ntrig = number of fired cells including 
crostalk and afterpulses effect 

tint = Signal integration time 

DCR = Dark Count Rate 

Simulation parameters : 
•  16-channel SiPM array (13x13 mm2 field of view) 
•  Diffusing optical coating on the top of the front scintillator and black absorbant coating on the edges of the scintillators and light guides 
•  SiPM intrinsic parameters set according to measurements at 20°C and Vbias= 71V [1] : PDE = 0.25, nf = 1.14, tint = 150 ns, DCR = 270 kHz 

Image of a matrix of ten pinpoints 511keV gamma source with normal 
incidence photon fluxes. Pinpoint sources are spaced apart from 1.6 mm 
along the X and Y axes to within 1.5 mm of the detector edge (only one 
eighth of the field of view was simulated). 

Configuration 1 (0,5mm thick light guide) Configuration 2 (2mm-thick light guide) 
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Conclusion and perspectives 

2mm-thick light guide 

•  16-channel SiPM array 
•  Electronic read-out 

based on a front-end 
chip composed of a     
32-channel ASIC 
(EASIROC, LAL) with 
individual trigger and 
charge measurement 

•  8-bit input DAC allowing 
individual adjustment of 
the bias voltage in order 
to improve the response 
uniformity 
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Mean FWHM 
0.85 mm [0.47-1.33] 
Mean bias 0.32 mm [0-0.68] 

•  Detection threshold to achieve a 1Hz 
Dark count rate strongly dependent 
on the level of the correlated noise 
(crosstalk and afterpulses)  

•  Beta detection efficiency up to 80 % 
can be obtained despite the high 
thermal and correlated noises of 
SiPM devices 

•  Optimal beta detection efficiency 
reached for low ∆V 

Preliminary images of 
collimated 204Tl 
irradiation spots 
obtained with a 0.5mm-
thick plastic scintillator 
(BC400, Bicron) 
covered by a sheet of 
specular reflector (ESR, 
3M) and a 1mm-thick 
PMMA light guide. 

•  Different designs of a positron imaging probe using SiPM photosensors were simulated. 
•  First configuration based on the stack of two SiPM arrays offers very good imaging performances and gamma ray 

rejection ability. 
•  Second configuration allows to reduce the size and the cost of the probe but further optimizations are necessary to 

improve the trade-off between the accuracy on the layer identification and the spatial performances 

•  Further optimizations will include the use of new position algorithms and optical coatings 
•  First measurements on scintillating fibre-SIPM assembly show that for a beta counting probe, good 

detection efficiency can be achieved 
[1] Bogalhas F et al., Phys. Med. Biol., vol. 54, 2009.   [2] Garcia-Parra R et al., Ann. Nucl. Med., vol. 25, 2011. 
[3] Hudin N et al., Nucl. Instr. and Meth., 
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