Yasuhiro NISHIMURA (Institute for Cosmic Ray Research, The University of Tokyo), Hyper-Kamiokande working group

Fiducial (total) mass

0.56 (0.99) Mton

× 25 (20) volume

of Super-K

Hyper-Kamiokande

Hyper-Kamiokande (Hyper-K) is a large water Cherenkov detector planned at Kamioka, Japan. It allows more sensitive research into many neutrino physics topics as an extension of Super-Kamiokande (Super-K). The candidate site is about 8 km south of Super-K under 648 m of rock. The fiducial volume of Hyper-K is 25 times larger than that of Super-K. We are considering a possible upgrade of photodetectors as well.

Hybrid-PhotoDetector (HPD)

Avalanche diode

 $39.3 \text{m} \, \phi \times 41.4 \text{m}$

Super-Kamiokande 0.0225 (0.05) Mton

Design of Hyper-Kamiokande $48(W) \times 250(L) \times 54(H) \text{ m}^3 \times 2 \text{ tanks}$

Photodetector

Better performance

Candidate

Selected by

photodetectors

Reliability

Low cost

Base design assumes the same

photo-multiplier tubes (PMTs) as used in Super-K.

PMT

Dynode: Venetian-blind type

The number of photodetectors		
	Hyper-K	Super-K
Inner detector	99,000	11,129
(for v detection)	(20-inch)	(20-inch)
Outer detector	25,000	1,885
(for cosmic-ray veto)	(8-inch)	(8-inch)
Photo-coverage	20%	40%†
QE (quantum efficiency)	~30%	22%

Cross section of Hyper-K

The detector consists of inner

and outer compartments.

20-inch HPD will be developed within a few years.

Fewer photodetectors, smaller size and photon-collecting reflectors may be considered to reduce cost.

8 or 13 inch HPD is

under testing

▶ Details in arXiv:1109.3262 [hep-ex] (15 Sep 2011) "Letter of Intent: The Hyper-Kamiokande Experiment - Detector Design and Physics Potential —"

► To choose the best photodetector for Hyper-K a proof test is planned in a water tank at Kamioka.

Higher QE is expected in Hyper-K.

†) Except SK III period

Hybrid-PhotoDetector (HPD)

- A new type of a photodetector with an avalanche diode instead of metal dynodes -

R3600

Hamamatsu

in Super-K

High performance

- Timing uniformity and fast response
- Gain uniformity
- Better S/N ratio

Low cost

Simple structure without metal dynodes

photon Avalanche diode (AD) ~ 8 kV ~ 260V (1-2kV in PMT) Bombardment gain ~400 (~5 in PMT) Avalanche gain ~100 $(10^6 - 10^7 \text{ in PMT dynodes})$

Another PMT with a

different type of

dynode is also a

possible candidate

that has a faster

response time.

Difficulties

- High voltage and amplifier
- Dark current of avalanche diode
- Thermal dependence
- No prior experience using

Viability for practical use in Hyper-K must be confirmed.

8-Inch HPD - For the first proof test -

▶ 8-inch HPD was developed by Hamamatsu photonics*.

Electronics packed in module

	Specification*		
Range of sensitive wavelengths			
Photocathode	8 kV		
AD bias	260 V		
Gain			
Single-photon resolution (σ)			
Transition time spread (σ)			
]	Photocathode AD bias resolution (σ)		

Correction, optimization

*) Yoshihiko KAWAI, Takayuki OHMURA and Masatoshi SUZUKI (Hamamatsu photonics K.K.)

► We started a measurement of its performance.

► Calibration of ten 8-inch HPDs before the test in water

Calibration for the proof test Gain – AD bias HV Gain adjustment ← Operation check Start from Eight of ten HPDs will be calibrated *summer 2012* before the proof test.

Characteristic evaluation

- Thermal dependence of AD gain Linearity, saturation and rate tolerance
- S/N ratio by HV and temperature
- Cross talk between HPDs, cables or boards and light leak from HPD
- Stability and aging effect
- Uniformity of timing and gain

Detailed performance and a long-term stability of two HPDs will be evaluated.

Scheaule Photo-detector performance measurements have started. The first proof test to measure water Cherenkov light is planned using 8-inch HPDs in 2012, as well as larger photodetectors with 20-inch diameter later within several years.

Test plan in 200-ton water tank

► A 200-ton water tank,

loaded with *Gadolinium* (0.2%),

was constructed at Kamioka mine

by neutron tagging experiment, **EGADS** (Evaluating Gadolinium's Action on Detector Systems).

It is an evaluation test for GADZOOKS! (Gadolinium Antineutrino Detector Zealously Outperforming Old Kamiokande Super!) The tank is equipped with 240 20-inch PMTs

and its installation will be completed in 2012.

EGADS tank

► Photo-detector evaluation test

It is allowed to replace several PMTs with candidate photodetectors. In 2012 eight 8-inch HPDs will be installed in the tank alongside 20-inch PMTs. We evaluate the performance of the candidate compared to that of the 20-inch PMT.

View inside tank 8-inch 20-inch **PMT**

► Setup of 8"HPD test in EGADS Water tank Planned in 2012 -(fall/rise time of the 8-inch HPD*) \backslash (1.7ns/2.7ns)/Charge + time (Analog Timing Module) (7ns/12ns) 70m signal cable | HV Low voltage cable < 10V Power supply

Signal is shaped by amplifier so that **HPD** has a similar shape to PMT for the EGADS test. Amp. HPD(8-inch) ~8kV PMT(20-inch) To use the same DAQ

A safety operation under ~8kV HV should be established.

for both PMT and HPD

Possibility to use HPD in Hyper-K

& control

In box

A measured trigger rate and resolutions in this test will give a possible energy threshold and a realistic sensitivity of Hyper-K using HPD. The safety and stability of operation in water will also be observed. Development of a 20-inch HPD will proceed based on this proof test.

Tentative R&D time scale of the photodetector measurement

Dec > 2013> 2014> 2015> Nov > Precise performance / Stability 20-inch PDs Calibration Installation Calibration / Measurement Test other photodetectors Preparation

In tank Open Hyper-K meeting will be held on 22-23 August, where more details are presented.