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Conventional Silicon Photomultiplier – SiPM

• an array of avalanche photodiodes 

• operated in Geiger mode    

• passive quenching by integrated resistor

• read out in parallel    signal is sum of all fired cells

polysilicon
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polysilicon resistor:

obstacle for light

limitation of PDE
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SiPM cell components    SiMPl approach 
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Resistor matching 
requires thin wafers!

wafer bonding

l << 450µm

lR
A

= ρ
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SiPM cell components    SiMPl approach 
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Resistor matching 
requires thin wafers!

wafer bonding

l << 450µm

Sensor wafer with SiMPl

Handle wafer

lR
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= ρ

Back
doping
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SiMPl prototype

6mm

6mm
30x30 arrays

10x10 arrays

Wide range of
geometrical variations

pitch: 90 -160 µm
different gap size
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900 cells (4x4 mm²)
Free entrance window
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SiMPl prototype

6mm

6mm
30x30 arrays

10x10 arrays

Wide range of
geometrical variations

pitch: 90 -160 µm
different gap size
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900 cells (4x4 mm²)
Free entrance window

Four 30x30 arrays
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Advantages and Disadvantages

Advantages:Advantages:
• no need of polysilicon
• no metal necessary within the array free entrance window for light
• simple technology lower costs
• inherent diffusion barrier against minorities in the bulk less optical  cross 

talk
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Advantages and Disadvantages

Advantages:Advantages:
• no need of polysilicon
• no metal necessary within the array free entrance window for light
• simple technology lower costs
• inherent diffusion barrier against minorities in the bulk less optical  cross 

talk

Drawbacks:Drawbacks:
• required depth for vertical resistors does not match wafer thickness
• wafer bonding is necessary for big pixel sizes 
• significant changes of cell size requires change of the material
• vertical ‘resistor‘ is a JFET non-linear IV longer recovery times
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IV-measurement & amplitude spectrum

homogeneous breakdown voltage

6 arrays

placed over 6mm distance

10x10 array of 135µm pitch @ 253K

(only dark count spectrum)

1pe

2pe

3pe
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Dark counts

due to non-optimized process sequence 
~10MHz/mm² @300K for 4V overbias

10x10 array of 130µm pitch @ 233K

Thermal generation

cooling helps

normal operation up to 
4V overbias @233K 

overbias > 4V 
non-quench condition
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Temperature dependence of quench resistor

T (°C) 0 -10 -20 -30 -40 -50
R (kΩ) 595 509 473 420 387 348

mobility:

µn(Si) ∝ T-2.4

τ = RQ·CD

Resistors designed for room temperature operation
limitation of operation voltage (non-quenching)
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S. Cova et al., Appl. Opt. 35 (1996)
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Optical cross talk

Second pn
junction

Optical barrier 
trench

n+

p+

n-

non-depleted
region

n-

non-depleted
region

n-

depleted gap
region

nInternal anode as 
diffusion barrier:

Corresponds to 
second pn-junction

Inherent for SiMPl
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photon

photoelectron

High field region

Bulk
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Optical cross talk

Increasing overbias
~ increasing gain
~ increasing trigger efficiency

Non-linear dependency on overbias

Pitch 135µm Pitch 130µm
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Optical cross talk 

Pitch / Gap Fill factor Cross talk (2V Vob)
130µm / 10µm 85.2% 29%

130µm / 11µm 83.8% 27%

130µm / 12µm 82.4% 25%

130µm / 20µm 71.6% 15%
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PDE: 130µm pitch, 20µm gap
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Breakdown voltage: 35.2V
Fill factor: 0.716
Laser repetition rate: 0.5MHz

Max. recovery time 2µs

Quenching limit PDE not in saturation
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Summary PDE measurement

Pitch/gap Fill Factor 405nm 440nm 573nm 598nm

130/10 0.852 26% 24% 14% 12%

29% 28% 14% 13%

25% 23% 14% 13%

20% 20% 14% 11%

130/11 0.838

130/12 0.824

130/20 0.716
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Geiger-Efficiency (GE) @ 2V overbias: ca. 50%

Wavelength 405nm 440nm 573nm 598nm

Transmission (sim.) 0.80 0.76 0.64 0.65
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Summary PDE measurement

Pitch/gap Fill Factor 405nm 440nm 573nm 598nm

130/10 0.852 26% 24% 14% 12%

29% 28% 14% 13%

25% 23% 14% 13%

20% 20% 14% 11%

130/11 0.838

130/12 0.824

130/20 0.716

With optimization (85% GE & 90% transmission) PDE of 65% 
easily achievable
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Geiger-Efficiency (GE) @ 2V overbias: ca. 50%

Wavelength 405nm 440nm 573nm 598nm

Transmission (sim.) 0.80 0.76 0.64 0.65
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Detection efficiency homogeneity scan

Scan of SiPM response with pulsed light 
source (ca. 1µm spot size)

relative PDE map
overall geometrical fill factor
...

For details Poster by M. Tesař (Session B)
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Next SiMPl generation – photon detection
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TDC, Photon counter, active recharge  

Cell 
electronics

Cell 
electronics

Topologically flat & free surface 

High fill factor

Sensitive to light

sensor wafer

handle wafer

on sensor wafer
2. bond sensor wafer

to handle wafer
3. thin sensor side

to desired thickness
4. process SiMPl arrays

on top side

sensor wafer

handle wafer

1. Structured implant on backside 5.  Etching backside 
& flip chipping on back side
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Next SiMPl generation – particle detection

Detection of particles:
- Excellent time stamping due to avalanche (sub-ns)
- Minimum ionizing particles generate about 80 e-h-pairs/µm
- No need for high trigger efficiency

Allows operation at low overbias voltage
Decrease of dark count rate & optical cross talk
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Topologically flat surface 

High fill factor

Adjustable resistor value 

Pitch limited by bump bonding

PhotoDet 2012, LAL Orsay



Summary & Outlook

New detector concept for New detector concept for SiPMsSiPMs with quench resistors integrated into with quench resistors integrated into 
the silicon bulkthe silicon bulk

- no polysilicon resistors, no contacts necessary at the entrance window 
- geometrical fill factor is given by the need of cross talk suppression only
- very simple process

Prototype productionPrototype production
-- quenching worksquenching works
-- first results very promisingfirst results very promising
-- problems encountered problems encountered optimization necessaryoptimization necessary

Further studies of the produced sensors (geometry dependence of the sensor 
performance, after pulsing, …) are ongoing

New production to reduce dark counts and implement small pixels

Next SiMPl generation first concepts for single cell readout
Christian Jendrysik 24PhotoDet 2012, LAL Orsay



Thanks 



Motivation for novel photon detectors

Low light level High Detection Efficiency
Large detector area low costs & power 

consumption

Large number of detectors low costs 
& power consumption

Single tile readout compact devices
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Other requirements:
fast timing & insensitivity to magnetic fields

Silicon Photomultiplier promising candidate



Polysilicon quench resistors

critical resistance rangecritical resistance range

rather unreliable process steprather unreliable process step

obstacle for incident lightobstacle for incident light

fill factor decreasedfill factor decreased
limitation of detection efficiencylimitation of detection efficiency

M. Mohammad et al.

‘Dopant segragation in polycrystalline silicon‘,

J. Appl. Physics, Nov.,1980
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Wafer bonding – Silicon On Insulator wafers

sensor wafer

handle wafer

1. implant backside
on sensor wafer

2. bond sensor wafer
to handle wafer

3. thin sensor side
to desired thickness

4. fabricate SiMPl arrays

sensor wafer

handle wafer

1. implant backside
on sensor wafer

2. bond sensor wafer
to handle wafer

3. thin sensor side
to desired thickness on top side

Industrial partners MPI HLL
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Gain linearity
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Expected:
linear with overbias voltage

Gain at 1V overbias

08 µm: 3.88 * 106

09 µm: 3.77 * 106

10 µm: 3.43 * 106

110µm pitch
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Gain linearity

10x10 array of 135µm pitch @ 253K
pulse height ∝ Q

Q = e·G = C·ΔU

linear

normal operation
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Photon Detection Efficiency

PDE = quantum efficiency · fill factor · Geiger efficiency

• quantum efficiency: e-h pair generated in depletion layer, QE(λ)

• fill factor: fraction of active to total area of device

• Geiger efficiency: avalanche triggered by generated carrier, GE(E)
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Optical cross talk & PDE

Pitch / Gap Fill factor Cross talk (2V Vob)
130µm / 10µm 85.2% 29%

130µm / 11µm 83.8% 27%

130µm / 12µm 82.4% 25%

130µm / 20µm 71.6% 15%

Photon Detection Efficiency estimation: 

• Optical entrance window: 90% @400nm 

• Geiger efficiency : 50% @ 2V overbias

Pitch / Gap Fill factor PDE

130µm / 10µm 85.2% 39%            

130µm / 11µm 83.8% 38%

130µm / 12µm 82.4% 37%

130µm / 20µm 71.6% 32%            

65%

64%

63%

55%

85% @ 6V overbias
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PDE measurements - setup

Spectralon (diffuse reflector)

Light source

DUTpin-diode

Pulse generator

Scope
Amperemeter

Method:

Measure >0 / all events
mean value (Poisson distribution)
mean photon number by pin-diode

No distortion by optical cross talk or 
after-pulsing

all events

>0

0 1 2 3

co
un

ts

Histogram

P. Eckert et al., NIM A 620 (2010)

Light-tight climate chamber
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Si

Air
SiO2

Transmission to silicon

200nm SiO2 
Prototype: no optimized entrance window 

Simulations with OpenFilters* for 
transmission into silicon
*S. Larouche, L. Martinu, Appl. Opt. 47 (2008)

PDE measurements @ 405nm, 440nm, 573nm, 598nm
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Optical cross talk

P. Buzhan et al., NIM A 610 (2009)

Distribution of time difference 
between two neighboring cells:

1: without optical crosstalk
suppression

2: suppression by optical barrier

3: suppression by optical barrier
and second pn-junction
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Second pn
junction

Optical barrier 
trench

photon

photoelectron

High field region

Bulk



Next SiMPl generation – particle detection

110µm 

Staircase of dark counts at different overbiasGeiger efficiency vs. bias voltage

10% GE 
still gives

>98%  MIP detection
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Decrease of dark count rate and optical cross talk
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