

A new design of large area MCP-PMT

for the next generation neutrino experiments

Yuekun Heng IHEP, Beijing

Representing the collaboration

- Background and motivation
 - Neutrino Expriments
 - Dayabayll Neutrino Experiment
- The Design of the new MCP-PMT
 - Large area
 - Low background
 - High QE
- The progress of R&D
- Summary

Current and Future Neutrino Experiments

Neutrino Experiments

• Big demanding for PMT

-Large area -Big quantity: low prices -Low Radiation Background -High QE

KamLAND: an Example of Reactor Neutrino Experiment

20" PMT

17" PMT

• Current benchmark:

- 1. Liquid Scintillator (LS)
 - -The Mass of LS: ~1kt
 - Attenuation length of LS: ~15m
 - Light yield of LS: ~~ 8000 photons/MeV
- 2. Photon Detector (PMT)
 - -Hamamatsu PMT:~~17 inch and 20 inch
 - -Quantum Efficiency: ~20%
 - -Collection efficiency of first dynode: ~70%
 - –Photon detection efficiency: ~14%

Photocathode coverage : ~34%

Light Yield of the Whole Detector:

250 p.e / Million electron volts energy (MeV)

Dayabay II Neutrino Experiment in China

	KamLAND	Daya Bay II	
Detector	~1 kt Liquid Scintillator	20 kt Liquid Scintillator	
Energy Resolution	<mark>6%/</mark> √E	<mark>3%/</mark> √E~??2%/√E	
Light yield	250 p.e./MeV	<mark>1000</mark> ~??2500 p.e./MeV	

- Ongoing R&D:
- Highly transparent LS: Attenuation length imes 2.5 ;

KamLAND: 15m \rightarrow Daya Bay II : 25m;

– Photocathode coverage : ×2

KamLAND: 34% \rightarrow Daya Bay II : ~ 80%

– High QE "PMT": Quantum Efficiency ×2;

20" UBA/SBA photocathode PMT from Hamamatzu ? QE > 40% New large area PMT ? QE > 40% ?

Conventional PMT

Photomultipliers are constructed from a glass envelope with a high vacuum inside, which houses a photocathode, several dynodes, and an anode.

The Quantum Efficiency of PMT

High QE PMTs: SBA (35%) and UBA (43%)

are only available in small format (< 3" diameter ?)

QE of Hamamatsu 20" PMT photocathode is about 20%

- Photoelectron collection efficiency (first dynode) is ~ 70%
- Overall photon detection efficiency is ~14%

Can we improve the Quantum Efficiency of Photocathode or

Photon Detection Efficiency for the large area 20" PMT ?

The new design of a large area PMT

Collaboration and organizing

Other company and institute (cooperated but not join us yet):

- Simulate the possibility of the 20" spherical MCP-PMT
- --Electron Multiplier: small size MCP(ϕ =18mm) \rightarrow large Dynode chain ;
- --photocathode area: transmission+ reflection, nearly 4π effective area ;
- --Could the small Electron Multiplier MCP collect all the photoelectron? Yes

The Simulation work – properties of MCP-PMT

The Low radioactive background glass

Large (8", 20");
Superb water-resistance characteristics;
Low radioactive background glass;

Low background gamma spectrometer in IHEP

radioactive background test of different PMT glass (unit: ppb)

Glass	DM-308	DM-305	Hamamastu	CN-2# Glass	CN-2# Material
Sample Mass	211.0g	131.1g	53.8g	335.2g	280.9g
Test Time	311023	424110	598930	315394	359618
238U	21.50±0.10	42.40±0.14	8.04±0.27	14.96±0.08	<0.1
²³² Th	18.50±0.32	6.43±0.23	12.50 ± 0.60	4.78±0.16	<0.2
⁴⁰ K	2.50 ± 0.01	41.01±0.03	0.3 ± 0.02	3.11 ± 0.01	< 0.01

17

Cathode

Alkali Metal Dispensers (AMD)

٠	Cs ₃ Sb on MnO	$(S11, \lfloor_{peak}$	@400nm,	QE~	20%)
٠	(Cs)Na ₂ KSb	$(S20, \lfloor_{peak})$	@400nm,	QE ~	30%)
٠	K_2CsSb	(_peak	@400nm,	QE ~	30%)
٠	$K_2CsSb(O)$	Lneak	@400nm,	QE~	35%)

>Use of highly purified materials for the photo cathode;

- >Optimal tuning of the material composition;
- >Optimal tuning of the photo cathode thickness ;
- >Optimal tuning of the anti-reflective layer;
- Optimal tuning of the Cs layer thickness :

MCP

Prototypes

Performance of the 5"-prototype

PhotoDec 2012

The single photoelectron spectrum and the multi-

photoelectron spectrum of the PMT

>SPE vs the luminance of the LED light

**--adjust2the working voltage of the LED to adjust the luninance of the LED light.

The photoelectron spectrum of a prototype: 5" IHEP-MCP-PMT

MPE vs the luminance of the LED light
**--adjust the working voltage of the LED to adjust the luminance of the LED light.

8" ellipse MCP-PMT

Summary

- 1. A new type of MCP-PMT is designed for the next generation neutrino exp.
 - Large ares: ~ 20";
 - High photon detection efficiency: ~30%, al least \times 2 than normal PMT;
 - Low cost: ~ low cost MCPs;
 - Low radiation background
- 2. The R&D process is composing with 3 step.
 - 5"(8") prototype with transmission photocathode;
 - 5"(8") prototype with transmission and reflection photocathode;
 - 20" prototype with transmission and reflection photocathode;
- 3. The R&D work is divided into 6 Parts to product the prototype to detect SPE:

①Photocathode; ②MCP; ③Glass; ④Photomultiplier; ⑤vacuum equipment; ⑥Test.

The Prototypes are being made and tested, a lot of works continue!

The end! 谢谢!

Thanks for your attention!

For PPO < 1g/l in PXE, PC,...

For PPO ~ 2.1 g/l in <u>dodecane</u>