

Characterization of Recently **Developed SiPMs for PET**

Florian R. Schneider^{1,3}, Dieter Renker², Sibylle I. Ziegler¹

Detectors: PM3350 and PM1150

- : SiPM prototypes developed by KETEK, Munich
 - · PM3350B-2: 3x3 mm², 50 µm cells, 62% fill factor, w/ optical trenches
 - · PM1150D-1: 1x1 mm², 50 µm cells, 60% fill factor, w/ optical trenches
 - · peak sensitivity @ 420 nm
 - · active surface protected with 300 µm epoxy
 - · operating voltage range 24 32 V
 - · PM3350 package size 3.9 x 4.4 x 2.0 mm3
 - · PM1150 tested in prototype package, only one pixel is connected

Detector Signals

- ·: Measurements performed with pulsed 400 nm LED
- ·: Pulse shapes with strong light pulse
 - · PM3350: rise 10 ns, fall 280 ns (10-90%), capacity 580 fF
 - · PM1150: rise 10 ns, fall 185 ns (10-90%), capacity 480 fF
 - · Gain: 106 @ 2 V overvoltage (according to KETEK datasheet)
 - · PM3350 has 80% of PM1150's gain
- : Single photon spectrum and pulse of PM3350 @ 26 V with preamp + shaping

Photodetection Efficiency

- : Relative PDE: single photon spectra
 - · Poisson statistics

Poisson statistics
$$P(k,\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

$$k = 0 \quad P(0,\lambda) = e^{-\lambda} = \frac{\text{counts pedestal}}{\text{counts total}}$$

$$PDE_{\text{rel, G-APD}} = \lambda = -\ln \frac{\text{counts pedestal}}{\text{counts total}}$$

- : Absolute PDE with the help of a known reference MPPC S10362-11-050C · illuminated with same light intensity and geometrical conditions
 - $PDE_{\text{abs, G-APD}} = PDE_{\text{abs, MPPC}} \cdot \frac{PDE_{\text{rel, G-APD}}}{PDE_{\text{rel, MPPC}}}$

Crosstalk

- ·: Triggered by DC > 0.5 pe
 - XTalk propability is the ratio of total counts and counts > 1 pe
 - · XTalk takes reflected photons e.g. at boundary epoxy-air into

I-V Curve

: Single cell resistivities

· PM3350: 481 kΩ · PM1150: 385 kΩ

- - · LYSO without any reflector, coupled with optical grease
 - · PM3350: energy resolution ~12% FWHM (not corrected for nonlinearity) and ~16% FWHM (corrected for non-linearity) @ 26.0 V for 662keV
- area and light losses due to the dimensions of the prototype package

Dr. Florian Wiest from KETEK GmbH

Florian Schneider, florian.schneider@tum.de http://www.nuk.med.tu-muenchen.de

- : Breakdown voltages extracted from single photon spectra with blue LED @ 400 nm
 - · Breakdown voltage change: PM3350: 23.7 mV/K
 - · Temperature coefficient is below 1 %/K for operation with relative overvoltages > 12%

Dark Count Rate

- : Single photon spectra in dark
 - · randomly triggered gate
 - · extracted the dark count probability with Poisson
 - DCR calculated with known gate length

Afterpulsing

- ·: Afterpulse occurence after triggering event > 0.5 pe
 - triggered by DC, gate directly opened after the triggered pulse maximum
 - · PM3350: 800 ns gate length PM1150: 250 ns gate length
 - · histogramming the time of occuring pulses within this gate
 - · corrected for darkcount background

- : Energy spectra of 137Cs with LYSO as first test for PET usability
- ·: PM1150: less collected light than for PM3350 due to smaller active