Delayed avalanche in SiPMs and especially MPPCs

Fabrice Retiere and Kyle Boone (Undergraduate student)

With help from Y. Iwai (Hamamatsu)

Motivation

A.Vacheret et al. NIM A656 (2011) 69-83

- Correlated noise
 - Cross-talk
 - After-pulsing
- Limit the MPPC over-voltage reach
 - Large dark noise pulses
 - Big concern for experiment with low PE count
 - Large excess noise factor = worse energy resolution
- Dark noise is not the main concern except for timing

Cross-talk and after-pulse

Cross-talk

- Prompt = by definition
- Origin: photons produced in the avalanche absorbed in neighboring high field region

After-pulse

- Delayed = by definition
- "Usual" origin: carrier produced in the avalanche trapped on impurities
- Alternative origin: photons absorbed in bulk
 - Delay due to diffusion
 - Lets test this hypothesis

Use external light source

R. Mirzoyan , R.Kosyra H.-G.Moser , NIMA 610 (2009) 98–100

Setup

- Light sources: 404, 437, 637, 820nm
 - Pulse width and jitter <80ps
 - 820nm lent to us by Hamamatsu thanks to Y. Iwai
- MPPC (or other SiPM)
- High speed amplifier
- Oscilloscope to record waveforms
- Temperature controlled chamber

Analysis method

- Look for pulses within a 1us window
- Accept only events with 1 pulse to avoid after-pulse
 - Set the light level to maximize efficiency
- Subtract out the noise contribution
 - Measure prior to light pulse
- Normalize distribution to one
 - Fit prompt peak by the convolution of an Gaussian and exponential

ETRIUMF

Look beyond the prompt pulse Evidence for delayed avalanches

T2K MPPC, <u>20C</u>, ΔV~1.5V

Time of the prompt peak set to 0.3 ns to show well on the logX plot

Dark noise is an issue at 20C

- Large correction in the tail. Limit the statistical accuracy
- Prompt peak a bit wider at 20C
- Tail does not seem to change
 - Expected because the coefficient of diffusion vary weakly with temperature

Over-voltage dependence

T2K MPPC, 820 nm, -60C

EXTRIUMF

Prompt pulse shape change vs over-voltage

Wider pulse at 637nm, most likely due to the laser FWHM timing resolution is a combination of Gaussian sigma and exponential tail

ETRIUMF

Fraction of prompt light decreases with increasing over-voltage

- Late light is 100% due to holes
 - Increased hole contribution with DV

T. Murase, H. Oide, H. Otono, S. Yamashita, PD09(003)

Late light and dark noise rate

Two version of the 1x1mm² MPPC

- LDC device has ½ the dark noise rate
- Expected to see a change in hole lifetime. Not seen!

Simple simulation

High field region

- 2.5 μm deep e- avalanche region (0.8 probability)
- 2.5 μm deep hole avalanche region (0.2 probability)
- Use measured prompt distribution (not modeled)
- Zero field region
 - $-5 \mu m 300 \mu m$
 - Random walk with D = 1.2 μm²/ns
- Hole life time = 300 ns

Adjusted

More complete simulations

More complete simulations

Inferring contribution due to the photons produced in the avalanche

R. Mirzoyan, R.Kosyra H.-G.Moser, NIM A 610 (2009) 98-100

Use complete simulations changing the light source: internal and broad spectrum

NIM A656 (2011) 69-83

Same analysis for Excelitas devices

Prompt peak a bit narrower (better single photon timing resolution) Fewer delayed avalanches

Summary

- Delayed avalanches clearly visible at 637 and 820 nm
 - Late avalanche probability increase with ΔV
 - Timing distribution mostly unaffected by ΔV
 - Weak dependence with temperature
 - More late avalanches for Hamamatsu than Excelitas

- Phenomena consistent with holes created in the bulk diffusing back to junction
 - Simulations can reproduce the data
 - Several free parameters
 because junction structure is unknown
- Phenomena can explain after-pulsing
 - Required x2 photon flux however

Outlook

- Blocking "avalanche" photons expected to improve MPPC performance
 - Blocking n++ layer
 - TSV (i.e. Deep trenches)
- Simulations
 - Wealth of data to constrain SiPM response
 - But little time...
 - Anybody interested in collaborating?

- Timing resolution: exponential tail issue
 - Worsen the single photon timing resolution by 20-40%
 - Were does it come from?
 - Low field region?
 - Slower pixels?
 - Depth dependence can be studied with different wavelength
 - Position dependence required a focused, fast light source