

Study of detection efficiency distribution and areal homogeneity of SiPMs

Michal Tesař¹, Christian Jendrysik, Jelena Ninković, Frank Simon Max-Planck-Institute for Physics, Germany

Highly granular calorimeters for future colliders

- particle flow algorithms for optimized jet energy reconstruction meet requirements for precision physics studies
- needs highly granular calorimeter systems

An Analog Imaging Hadron Calorimeter

- 10 millions channels
- fully integrated electronics

A test setup for SiPM areal sensitivity scanning

Measurement goal: high resolution sensitivity maps of SiPMs

scanning of SiPM surface with highly focused pulsed light source

Measurement parameters:

step size ~ 1 μm

microscope

• light spot diameter ~ 1 μ m

- small photon sensor embedded in each $3 \times 3 \times 0.3$ cm³ scintillator tile
- → possible with SiPMs

Scintillator tile for the CALICE analog HCAL prototype.

ILD analog HCAL.

- requires large-scale SiPM production
- detailed understanding of SiPM devices crucial

need to develop a tool for precise study of SiPMs on microscopic level to be able to compare different devices

Measurement capabilities

noise peak

7000

6000

Sensitivity maps measured at 0.5 and 1.5 p.e. threshold.

Analysis example:

fill-factor discrimination level

- sensitivity distributions over large area to set thresholds to determine active/non-active area
- extraction of parameters of interest
- noise subtraction
- calculate fill-factor from overall distribution
 - for whole scanned area
 - for each single pixel individually

LED steering pulse length 10 ns • number of shots per step 20 000 •scan time of a typical $1 \times 1 \text{ mm}^2 \sim 40 \text{ hours}$

SiPM under test

SiPM sensitivity scan setup.

Simplified block scheme of the setup.

micropositioning stage

Measurement methodology:

- initial alignment of device using three reference points to ensure optimal focusing over full sensor surface
- scanning with 3D micropositioning stage in 1µm steps on SiPM surface
- two simultaneous measurements of SiPM response at two thresholds provide information on cross-talk

Study of a Hamamatsu MPPC

Extracted quantities:

- relative photon detection efficiency (PDE) map
- crosstalk probability map
- pure 1 p.e. signal map
- overall geometrical fill-factor
- dark count

area giving the fill-factor

Intries 250000

ean 0.1401 MS 0.04952

0.1401

Distribution of fraction of detected pulses over $\frac{1}{4}$ of Hamamatsu MPPC (50 μ m pixel pitch).

Study of SiMPI prototypes

- SiMPI (Silicon MultiPixel light detector) is a SiPM prototype developed in the Semiconductor Lab of the Max-Planck-Institute in Munich
- uses the silicon bulk as a quenching resistor instead of a polysilicon structure on the top of the detector

Advantages:

- simple fabrication process
- no obstacles in entrance window
- possible high geometrical fill-factor

Cross-section of a SiMPI prototype.

Disadvantages:

- silicon wafer thickness 30-70 μm required
- the quenching resistor acts like JFET
- → 3-4× longer recovery times

- Hamamatsu MPPC (50 µm pitch): used in CALICE-T3B experiment to study the time structure of hadronic showers
- detailed investigation of properties of the device are of interest
- in addition to response properties, possible variations of these quantities with over-bias voltage were investigated

Relative PDE map recorded at discrimination threshold of 0.5 p.e.

Study results:

- detection efficiency patterns do not show significant voltage dependence
- geometrical fill-factor does not show significant voltage dependence
- edge breakdown observed, disappears with increasing over-bias voltage

edge breakdown

Analysis of (integrated) efficiency and fillfactor of each pixel:

• possibility of antireflective coating

compared to conventional SiPMs

Photo-emission image of a SiMPI prototype.

Scan map of a SiMPI prototype.

issue will be eliminated in the next production series. A talk about SiMPIs: SiPM session, June 13, 2:20 PM.

Room temperature

measurement is not

the best option for

these prototypes.

This performance

study of homogeneity of device at microcell level

Homogeneity fluctuations are characterized by:

• PDE spread between the most and least sensitive pixel

quantity	value
PDE spread	8%
Fill-factor spread	11%
Crosstalk probability*	18%
Geometrical fill-factor	55%

Study results.

Integrated efficiency map. Each square represents one microcell.

spread of geometrical fill-factor between pixel with the largest and the smallest sensitive area

* measured in a black box without any explicit illumination

tesar@mpp.mpg.de

PhotoDet, Orsay, France, June 2012