

Asian Region Mechanical Design

Masanobu Miyahara /KEK Atsushi Enomoto /KEK Masahito Huse /Nikken Sekkei

Content

- 1 Cooling Water System
- 2 HVAC System
- 3 Plumbing System
 Summary

Asian Region Mechanical Design Scheme Change Image

Asian Region Mechanical Design New Scheme Kamaboko Tunnel

Cooling Water System Heat Load Summary

Cooling Water Load

(MW)

LCW	AH1	Α	H2	Α	H3	,	AH4	PMC-0	PMB-0	PXB-0	Α	H5	A	H6	А	H7	AH8	Total
Source e-											2.88							2.88
Source e+							5.53											5.53
DR								11.86	2.09									13.95
RTML		2.93					0.33				0.33					2.93		6.51
ML		5.59	5.59	5.59	5.59	5.03						4.65	5.59	5.59	5.59	5.59		54.42
BDS							4.60				4.60							9.20
Dumps										39.95								39.95
IR(DH)										0.20								0.20
subTotal	0	8.52	5.59	5.59	5.59	5.03	10.46	11.86	2.09	40.15	7.81	4.65	5.59	5.59	5.59	8.52	0.00	132.64
Cryogenics	0	7.3	37	7.	37	7	['] .96	2.52		1.73	7.	96	7.3	37	7.	37	0.00	49.65
Total	0	21.	.48	18	.55	2	3.45	14.38	2.09	41.88	20	.42	18.	.55	21	.48	0.00	182.29

Air + CHw Load

Air+Chw	AH1	Al	H2	A	H3	A	λH4	PMC-0	PMB-0	PXB-0	Α	.H5	Al	H6	Α	H7	AH8	Total
Source e-											1.42							1.42
Source e+							0.72											0.72
DR								0.74	0.13									0.87
RTML		0.95					0.11				0.11					0.95		2.10
ML		1.20	1.20	1.20	1.20	1.08						1.00	1.20	1.20	1.20	1.20		11.69
BDS							0.62				0.62							1.23
Dumps										0.00								0.00
IR(DH)										0.38								0.38
subTotal	0	2.15	1.20	1.20	1.20	1.08	1.44	0.74	0.13	0.38	2.14	1.00	1.20	1.20	1.20	2.15	0.00	
Total	0	3.3	35	2.4	40	2	.52	0.74	0.13	0.38	3.	14	2.4	40	3.3	35	0.00	18.41

Total 200MW

200.7

Cooling Water System 3 Types of Cooling Tower

A: Closed-circuit Type (Air-cooled)

B: Closed-circuit Type (Water cooled)

C: Open Type (Water cooled)

- IN RDR, we adopted Air-cooled type Cooling tower
- Makeup water Issue in Mountainous area

Cooling Water System 3 Types of Cooling Tower

Makeup water for 200MW cooling

```
- WE (Evaporation)=288m3/h
```

- WC (Carry over) =47m3/h

- WB (Blow down) = 241m3/h

Total

=WE+WC+WB

=576m3/h

Reservation of Makeup water

Groundwater

- =1m3/km/min*30km*60min/h
- =1,800m3/h

Cooling Water System Comparison of Cooling Tower Type

	A	В	C
TYPE	Closed-circuit Air-cooled Type	Closed-circuit Cooling Tower	Open Type Cooling Tower
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	320	\$ 32° - ©
UNIT SIZE (6MW UNIT)	59m × 10m	22m × 4m	12m × 4m
SPACE (for 200MW)	14,160m2	5,870m2	3,200m2
NOISE (6MW UNIT)	95dB(A)	80dB(A)	75dB(A)
UNIT COST (for 200MW)	9,330M¥	1,810M¥	370M¥

RDR Scheme

TDR Scheme

Cooling Water System 2-Loop & 3-Loop System

3-Loop System CT2nd Loop HEX Galvanized steel **Piping** HEX 3rd Loop RF D.I. Water Stain steel Piping

Piping

Cooling Water System Comparison of 2-Loop and 3-Loop

	2-Loop System	3-Loop System
Cost (AH-3)	3,423M\	2,943M\
Water leakage	If there would be some troubleat the thin pipe around accelerator, 5km(total 650m3) de ionized cooling water would be run over.	
Evaluation	Δ	0

Cooling Water System 3-Loop Chw System

Cooling Water System

Inverter turbo refrigerator

HVAC System

Tunnel Ventilation System in RDR

HVAC System

Tunnel Ventilation System

HVAC System Tunnel Ventilation System

Outside air

Heated or Cooled by Air-handling Unit

Fire !!

Helium Quench !!

HVAC System

Tunnel Ventilation Rate

HVAC System Typical Tunnel Section Plan

19

Plumbing System

Drainage System

Cooling water leakage:

to the DP tank for RI monitoring

Ground water:

Amount of Springwater 1t/km.Min. \rightarrow 30t/min.

43,000t/day

Plumbing System

Water Supply and Drainage System

Plumbing System

Water Supply and Drainage System

Asian Region Mechanical Design

Summary (1)

Cooling Water System

- Use the open type Cooling Tower System
- Use 3-Loop System (∠t=11°C)
- Inverter Turbo Refrigerator is used to make CHW HVAC System
- Air Ventilation is through the Duct in Access tunnel
- Ventilation in ML tunnel is "Duct-less", 0.5m/s Velocity
- Fire Smoke is extracted to the surface through AH,AT.

Asian Region Mechanical Design

Summary (2)

Plumbing System (water supply)

- City water is used for the potable water.
- Groundwater is used for the makeup water of CT.

Drainage System

- Groundwater is flow down to the Access Hall through the Drainage ditch under the Service Tunnel.
- Leaked Cooling Water to the DP tank for RI Monitoring
 We need more detailed study by the time next meeting in Korea