

ILC Mechanical & Electrical Review and CFS Baseline Technical Review

from Wednesday, 21 March 2012 at **09:00** to Friday, 23 March 2012 at **18:00** (Europe/Zurich) at **CERN (6-2-024 - BE Auditorium Meyrin)**

CFS update for Europe

TDR progress for Klycluster Scheme on the CERN Site

- Several machine lattice files received from DESY EDMS (Benno List) February 2012
- CERN draughtsman (Antoine Kosmicki) has spent 2 weeks putting these files together in order to generate a 3d model for the 500GeV machine
- •Using this 3d model and Autocad files from FNAL for Kycluster scheme, an attempt has been made to size the underground enclosures, optimised for the CERN geology.
- •Once 'approved' this new civil engineering layout will be costed by AMBERG Engineering (same company costed RDR for Europe, CLIC and also works on XFEL)
- •Interaction Region Studies by ARUP for CERN site are now finished. Final report today.

Only e-side fully modeled (Positron Source). Impossible to model the entire machine in CATIA, which is 'limited' to 15km.

Local co-ordinate systems needs to be created to have the entire machine into one model.

ILC Project

e- Tune-Up Dump

E- Fast Abort Dump Cavern

Photon Dump Cavern

Target bypass 'dog-leg' area

Undulator Area Positron source target with remote handling area: Needs shaft and hall! Positron Capture Chicane

Concorns half of the	orojost	(ci ro	2100	area) BUT NOT MAIN LINAC ??
Concerns harr or the p	rojecc	(С110	Teu (itea) Boi Noi MAIN LINAC ::
	Length (m)	Requ ired diam eter (m)	Opti mise d diam eter (m)	
Experimental Cavern Interface Tunnel 1	68	5.20	8.00	BDS BDS ILC Project general view
Main Dump Branch Tunnel 2	82	6.00	8.00	
Main Dump Branch Tunnel 3	173	7.00	8.00	
Damping Ring Branch Tunnel 4	60	12.00	12.00	
PTRAN & BDS Diag. Dump Tunnel 5	965	7.00	8.00	
Tune-Up Dump Tunnel6	75	10.00	10.00	tunnel optimized 10
400 MeV accelerator Tunnel 7	130	8.00	8.00	for CERN CERN
400 MeV accelerator Tunnel 8	155	7.00	8.00	
Positron Production Tunnel & Remote Handling Cavern 9	467	5.20	8.00	
Positron Production Tunnel & Remote Handling Cavern 10	96	8.00	8.00	15
e- BDS Dogleg Tunnel 11	242	5.20	8.00	
e- BDS Dogleg Tunnel 12	45	6.00	8.00	
e- BDS Dogleg Tunnel 13	200	6.00	8.00	
Undulator & Fast Abort Dump Tunnel & Undulator Access Cavern 14	120	6.00	8.00	32
End ML – Start Positron Tunnel 15	1388 ??	5.20	5.20	5 4
Damping Ring Transfer Tunnel 16	270	6	6	
Damping Ring Juriction Cavern 17	22	14	14	

Typical Main Linac Cross Section for Klycluster Scheme on the CERN Site

CERN TDR efforts for Klycluster Scheme... Next Steps

- These layouts will be used for ILC Europe civil engineering costing purposes and for :
 - Europe Scheduling exercise (Martin Gastal & Katy Foraz)
 - Handling & Installation studies (Keith Kershaw)
 - Survey & Alignment (Helene Mainaud Durand)
 - Safety requirements (Fabio Corsanego)

- Exact Scope of what is to included in these chapters needs to be defined.
- Environmental Impact Studies are ongoing for a LC at CERN (with the help of a technical student Caroline Waaijer).

BACK-UP SLIDES

Environmental Impact Assessment (EIA)

- Required by French and Swiss law
 - Feasibility issue
- 3 phases
 - Screening: establish necessity for LIA ()
 - Scoping: conduct EIA
 - Review: before submission
- Required knowledge
 - Legal framework
 - Policies & decision-making
 - Engineering
 - Environmental impact criteria
 - Biophysical, socio-cultural, socio-economica

Environmental Impact Assessment

- Major issues for ILC:
 - Civil Engineering
 - Excavations, spoil dumps, soil swelling, hydrology, release pollutants geothermal drillings, hydrocarbons, visual impact...
 - Energy consumption
 - Focus on renewable & sustainable energy
 - Water consumption
 - Where discharged?
 - Focus on renewable & sustainable energy
 - Social acceptance
 - Impacts during and after constructions, fear
 - Waste
 - Radiation

Feasibility threats

- Next steps
 - Planning
 - Task division
 - cost estimates EIA
 - Land acquisition
 - Start
 - Work together with Swiss / French authorities
 - In-depth studies
 - Identify knowledge gaps
 - Address feasibility threats

