# Interaction Region Studies for a Linear Collider at CERN

- Detector 'push-pull' slab design
- Cavern assessment

Matt Sykes







Beam Line.

Interaction Region ("IR")

15,000t detector on a slab and

movement system.

Detector moves 15 times per year from beam into "garage position"

# **Summary of Requirements**

#### 4.1 Task 1 – Movement Platform

| Platform Design Criteria Value Unit                      |               | Unit   | Notes/assumptions                                                                    |                                                                                                                                                                                                                       |  |  |  |  |  |
|----------------------------------------------------------|---------------|--------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Detector ILD                                             |               |        | ILD is currently the most onerous system in terms of spatial and weight requirements |                                                                                                                                                                                                                       |  |  |  |  |  |
| Detector Total Weight                                    |               | 15,500 | tonnes                                                                               | Fully installed weight including services and supply etc for movement to beam. It is assumed that additional weight is not added to the detector (and therefore the platform) once on the beam line, or at the garage |  |  |  |  |  |
| Detector<br>Segment<br>Weight                            | Door -Z       | 3,500  | tonnes                                                                               | An important design case for the platform will be when the detector is split for maintenan                                                                                                                            |  |  |  |  |  |
|                                                          | Barrel -1     | 2,500  | tonnes                                                                               | Dsbourne 27 <sup>th</sup> May 2011). The SiD and ILD have different combinations of slices when spl<br>The worst loading case will be determined from the various combinations of ILD and SiD 1                       |  |  |  |  |  |
|                                                          | Barrel 0      | 3,500  | tonnes                                                                               | naintenance arrangements                                                                                                                                                                                              |  |  |  |  |  |
|                                                          | Barrel +1     | 2,500  | tonnes                                                                               |                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                          | Door +Z       | 3,500  | tonnes                                                                               |                                                                                                                                                                                                                       |  |  |  |  |  |
| Slab<br>Vibrations<br>Modes                              | First Mode    | 20 Hz  |                                                                                      | Assumed feet and ground infinitely rigid with damping ratio of $\sim 2\%$                                                                                                                                             |  |  |  |  |  |
|                                                          | Further Modes |        |                                                                                      | To be advised and informed by study, to include feet, invert slab and ground are expected to add compliance to the platform system                                                                                    |  |  |  |  |  |
| Magnetic field at top of platform <1,000 gauss           |               |        | gauss                                                                                | It has been assumed that this is at the top of the platform                                                                                                                                                           |  |  |  |  |  |
| Operating Temperature Range $20^{\circ}C \pm 2^{\circ}C$ |               |        |                                                                                      |                                                                                                                                                                                                                       |  |  |  |  |  |



# **Summary of Requirements**

| Platform Design Criteria<br>(continued) |           | Value Unit                   | Notes/assumptions                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------|-----------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Movement System                         | Mechanism | Rollers or air pads          | The platform design will be developed to be compatible with either roller or air<br>pads. Should the design place any onerous performance requirement on one<br>particular system this will be identified and where appropriate a mitigation measure<br>identified. If a single platform design cannot service both systems clarification will<br>be sought on the movement system to be used. |  |  |
|                                         | Drive     | Gripper jacks                |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                         | Concept   | Single platform per detector | The design will be progressed on the basis that the two detectors are moved independently on separate platforms                                                                                                                                                                                                                                                                                |  |  |
| Distraction                             | Material  | Reinforced<br>Concrete       | A Steel support truss will not be considered further                                                                                                                                                                                                                                                                                                                                           |  |  |
| Platform                                | Footprint | 20x20 m                      |                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                         | Elevation | Study to confirm this        | Beam to top of platform set by detector, platform depth below to be established<br>during study. ILD to be used as greater beam to base distance (thinnest platform for<br>same rail level)                                                                                                                                                                                                    |  |  |
| Minimum distance between detectors      |           | 15 m                         | Minimum proximity of detectors at any location measured from exterior of iron                                                                                                                                                                                                                                                                                                                  |  |  |



# **Summary of Requirements**

| Platform Performance<br>Requirement |           | Value | Unit                                                              | Notes/assumptions                                                                                                                                                                     |  |  |
|-------------------------------------|-----------|-------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Movement duration                   |           | 5     | hours                                                             | This is assumed to be the detector "speed" when travelling and would therefore no<br>include preparation time to disconnect/connect detector or preparation of the<br>movement system |  |  |
| Speed                               | >1        | mm/s  | (after acceleration). Assumed that the 5 hour requirement governs |                                                                                                                                                                                       |  |  |
| Number of movements                 |           | 10    | year <sup>-1</sup>                                                | Assumed that both detectors will be moved an equal number of times                                                                                                                    |  |  |
| Limit of acceleration               |           | 0.05  | g                                                                 | This is a limit during movement                                                                                                                                                       |  |  |
| Maintenance                         | On Beam   | 2     | m                                                                 | This is the between adjacent sections (end cap to centre section) when detector opened in the beam location                                                                           |  |  |
| allowances                          | In Garage | 6     | m                                                                 | This is the between adjacent sections (end cap to centre section) when detector opened in the garage location                                                                         |  |  |
| Static Deformation of platform +    |           | +-2   | mm                                                                | In all locations, including during movement (as a single element or in sections)                                                                                                      |  |  |
| Positioning relative to beam        |           | +-1   | mm                                                                | In relation to the beam location                                                                                                                                                      |  |  |

 Limited to under the footprint of the detector.
 n/a when un-slicing

#### **Slab flexure critical – but what is its definition?**

- Design using +/-2mm Under Detector
- Deflection limit Not applied during un-slicing



#### ILD top loads when moving/closed



#### ILD top loads when un-slicing



## SiD top loads when moving/closed





#### SiD top loads when un-slicing



# A refined support system for ILD

- Step 1: ILD Slab on permanent supports
- Step 2: Put ILD(closed) loads on top of slab
- Step 3: Jack onto transportation system
- Step 4: Consider un-slicing not now subject to deflection limits



# Step 1: ILD Slab on permanent supports

#### Slab on permanent supports (directly under the top loads for ILD closed)





# Step 2: Put ILD(closed) loads on top of slab

This has negligible displacement effect because the loads are (nearly) directly above the supports





# **Step 3: Jack onto transportation system**

 ILD (closed) effect upon top surface of jacking onto the transportation system (jack config 1)



# **Step 3 (continued)**

 ILD (closed) effect upon top surface of jacking onto the transportation system (jack config 1)



Model summary: E = 32GPa Slab 20x20mx2.2m

Load = [Slab self weight + ILD (closed) top loads + jack supports] - [Slab self weight on permanent supports]



# **Step 1: SiD Slab on permanent supports**

#### Slab on permanent supports (directly under the top loads for ILD closed – so we use same tracks as ILD)





# Step 2: Put SiD(closed) loads on top of slab

This has negligible displacement effect because the loads are (nearly) directly above the supports





# **Put SiD(closed) moving on transportation system**



#### **Put SiD(closed) moving on transportation system**





### **Un-slicing**

- Un-slicing causes top loads to move away from the permanent supports.
- Because of this, un-slicing would cause displacement limits to be exceeded if supported only by the permanent supports. Displacement limits N/A



### The movement support system – ILD, Airpads



#### The movement support system – ILD, Rollers





### The movement support system – SiD, Airpads



#### The movement support system – SiD, Rollers



### **Conclusion on ILD movement**

#### **Moving the Detector**

- Can achieve disp limits of +/-2mm when moving
  - ILD on 2.2m slab with pads or rollers
  - SiD on 3.8m slab with pads or rollers
  - Design works with pads and rollers, choice outside scope of assessment

#### Recommended Contingency/Studies

- Jacking and packing if the invert does flex (to keep the slab permanent supports plane)
- Provide 50mm packing from the start to allow the height to be reduced
- Evaluate slab final positioning systems (eg PTFE sliding surface)
- Movement system not examined in detail (stick-slip accelerations require evaluation, 0.05m/s<sup>2</sup>)

#### **Un-slicing**

- Limits exceeded when un-slicing.....but not applicable
- But props/shims will be needed under tracks when un-slicing to avoid a step
  BUT
- Conclusions above dependent on invert flex ----- Displacement limit of ~0.5mm

How do we limit cavern invert deflection to less than 0.5mm (creep and absolute) (Controlled by ground yield and invert stiffness)

Is cavern geometry:

- 1. Feasible for working concept?
- 2. Influencing yield at IR?

Slab deflection limited to 2mm (20m by 20m concrete slab)



#### **Key Issues for Invert Performance**

Ravg = 14m



- •What are the important characteristics of the ground?
- •What is stress state in ground after construction?
- •How will ground yield as a result?
- •What are the invert displacements?

# **Depositional Environment**

Lateral and vertical variability



## **New Assessment of Existing Information**



#### **Confirmation of Depositional Features**

- Examples from Point 5 GSG Face logs  $\mathcal{E}(101^\circ)$ 



Pillar Ch. 198-201m

ARI

31

..**Ļ**.

#### **Stress History and Ground Parameters**

| Assumed stress path: |                                                     |                        |                                         |                                       | 16000                                    | q-p                                                          |
|----------------------|-----------------------------------------------------|------------------------|-----------------------------------------|---------------------------------------|------------------------------------------|--------------------------------------------------------------|
| Stage                | Name                                                | Cavern<br>Depth<br>(m) | Soil<br>Effective<br>Weight<br>(kN/m^3) | Vertical<br>Effective<br>Stress (kPa) | 12000 ·<br>10000 ·<br>8000 ·             | Simulated    Current    Stress    State                      |
| 1                    | Deposition of<br>Molasse Rocks<br>(2km)             | 2060                   | 16                                      | 33000                                 | 6000 · · · · · · · · · · · · · · · · · · |                                                              |
| 2                    | Erosion                                             | 60                     | 16                                      | 1000                                  | 0 -                                      |                                                              |
| 3                    | Assumed<br>deposition of<br>20m Moraine<br>deposits | 80                     | 11                                      | 1200                                  | -2000 -<br>-4000 -                       | 0 5000 10000 15000 20000 25000 3000<br>p kPa (s used for 2D) |
| <b>a n</b>           |                                                     |                        |                                         |                                       | 2.5                                      |                                                              |

#### Soil mass parameters:

|           | -    |        |      | 1                      |        |     |
|-----------|------|--------|------|------------------------|--------|-----|
|           | γ    | k      | ν    | E <sub>mass</sub> (LB) | с'     | φ'  |
| Name      | [kN/ |        |      | inabo                  | [kN/m^ |     |
|           | m^3] | [m/s]  | [-]  | [kN/m^2]               | 2]     | [°] |
| Molasse   |      | 1.00E- |      |                        |        |     |
| Rock Mass | 23   | 09     | 0.2  | 2800000                | 220    | 35  |
| Moraine   |      | 1.00E- |      |                        |        |     |
| Gravel    | 23   | 05     | 0.25 | 50000                  | 0.01   | 35  |

Note: small strain stiffness/creep not known



#### **Regional Stress Regime**





#### Likely Stress Trajectory at Cavern





# Layout G



# **2D FE analysis**





Lining support assumed to be same as UXC55 Cavern

#### **2D Invert Deformations**



Longitudinal: 3.3mm / 16.6m = 0.2mm/m x 20m = 4mm/20m > 0.5mm/20m.

Transverse: 3.3mm-3 mm / 13.5m = 0.023 x 20 = **0.45mm/20m < 0.5mm/20m**.

"Static" analysis carried out, existing data did not allow small strain stiffness, creep and cyclic deformation



## **Boundary Conditions**



38







# Conclusions

#### <u>Slab</u>

- Slab design for loads can be achieved for rollers and air pads
- Stick-slip accelerations need review for movements systems and slab final positioning

#### **Cavern**

- Performance of invert under loading is marginal in CERN geology, given sequence reviewed
- Invert performance highly dependent on:
  - Geology detailed and focussed SI required
  - In situ stress verification of local variation
  - Construction sequence to minimise disturbance
- Long term and cyclic displacement and creep not yet understood



#### Recommendations

#### Focus investigations

- Seismic logging and 3d interpretation to select best horizon
- Small strain stiffness
- Sampling for creep evaluation

#### Provide contingency design for:

- Cavern support and sequencing (IR first)
- Increase separation between Garage Caverns
- Piling the cavern invert slab
- Concrete pillar between caverns
- Stiffer slab to allow more invert flex



Section A-A



#### **Further work**

### Ongoing commission with Fermilab

- Desk study
- Cavern design Assessment
- Costing
- IR cavern performance assessment

#### Initiating internal dialogue with Arup's Tokyo Office

