Time and Matter 2007

Contribution ID: 17 Type: not specified

Challenging the Cosmological Constant

Monday 27 August 2007 09:45 (45 minutes)

We outline a dynamical dark energy scenario whose signatures may be simultaneously tested by astronomical observations and laboratory experiments. The dark energy is a field with slightly sub-gravitational couplings to matter, a logarithmic self-interaction potential with a scale tuned to $\sim 10^{-3} {\rm eV}$, as is usual in quintessence models, and an effective mass m_ϕ influenced by the environmental energy density. Its forces may be suppressed just below the current bounds by the chameleon-like mimicry, whereby only outer layers of mass distributions, of thickness $1/m_\phi$, give off appreciable long range forces. We discuss its cosmological evolution and consequences. Among the signatures of this scenario may be dark energy equation of state $w\neq -1$, stronger gravity in dilute mediums, that may influence BBN and appear as an excess of dark matter, and sub-millimeter corrections to Newton's law, close to the present laboratory limits.

Presenter: Prof. KALOPER, Nemanja (University of California, Davis) **Session Classification:** Times Arrow and the Early Universe