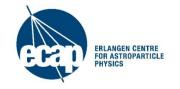

Deep Ocean Cabled Observatories Amsterdam, 24-25 May 2012

Introduction to future synergy options

Uli Katz ECAP, Univ. Erlangen 25.05.2012

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

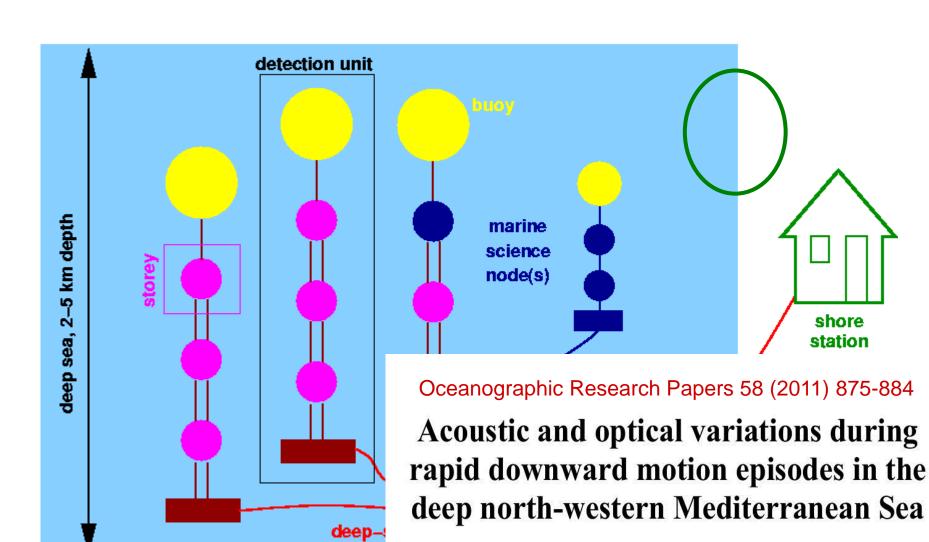


The next 20 minutes

- Synergy opportunities
- Mediterranean nodes in a wider network
- Future installations
- Strategic considerations

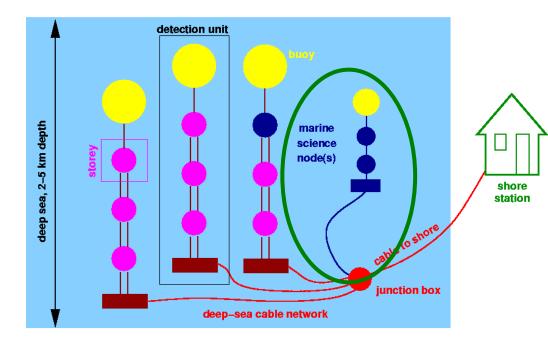
Synergy is two or more things functioning together to produce a result not independently obtainable. The term *synergy* comes from the Greek συνεργός, meaning "working together". (wikipedia.org)

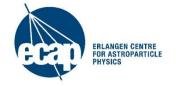
Don't forget: the following is from the perspective of a neutrino telescope person!

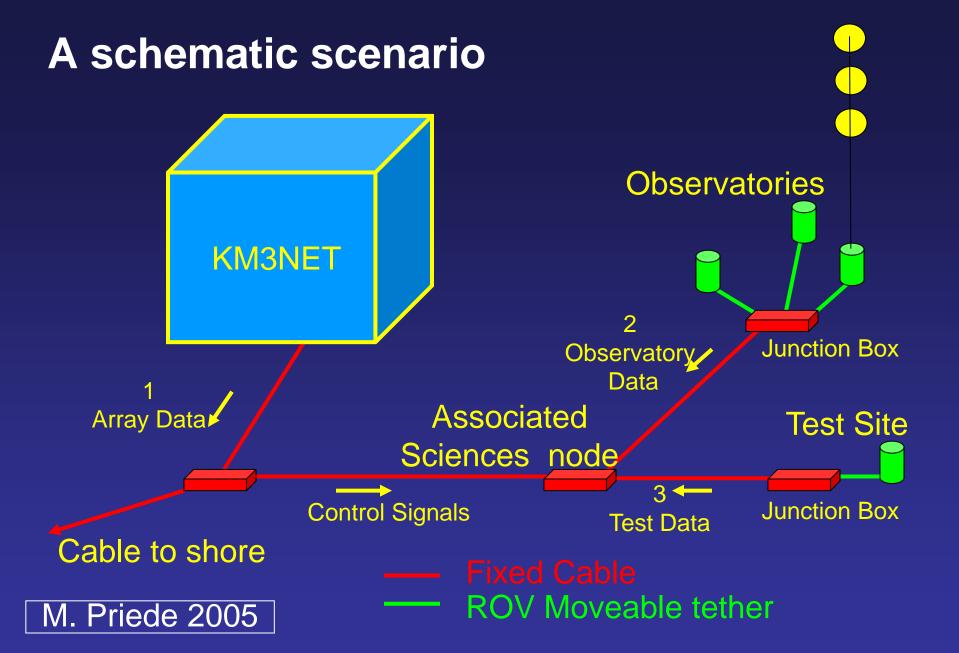


Synergy opportunities

- Neutrino telescope data used by other science communities
- Neutrino telescope connectivity used by other science communities
- Deep-sea technology: mutual profit from developments in different fields
- Deep-sea scientific expertise used by neutrino telescope community


NT data for earth and sea sciences



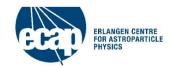

H. van Haren^{z,*}, I. Taupier-Letage^{ah,1}, J.A. Aguilar^a, A. Albert^b, M. Anghinolfi^c, G. Anton^d, S. Anvar^e, M. Ardid^f, A.C. Assis Jesus^g, T. Astraatmadja^{g,2}, J-J. Aubert^h, R. Auer^d, B. Baretⁱ, S. Basa^j, M. Bazzotti^{k,ℓ}, V. Bertin^h, S. Biagi^{k,ℓ}, C. Bigongiari^a, M. Bou-Cabo^f, M.C. Bouwhuis^g, A. Brown^h, J. Brunner^{h,3}, J. Busto^h, F. Camarena^f, A. Capone^{m,n}, G. Carminati^{k,ℓ,4}, J. Carr^h, D. Castel^b, F. Castorina^{o,p}, V. Cavasinni^{o,p}, S. Cecchini^{ℓ,q}, Ph. Charvis^f, T. Chiarusi^ℓ, M. Circella^s

NT connectivity for earth and sea sciences

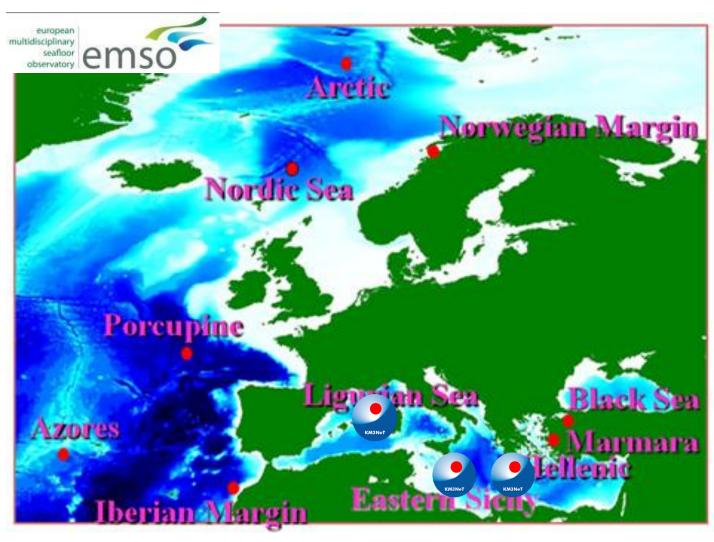
- Neutrino telescope provides continuous connectivity:
 - Electric power
 - Data bandwidth
 - Control
 - Standard connectors
- Earth & sea science instrumentation connected to dedicated junction box
- Installation and operation under common NT and E&S control

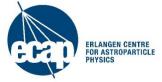
Technology synergy

- Earth and sea sciences have experience and expertise in
 - Deep-sea components (e.g. plugs, penetrators, junction boxes, cables, materials ...)
 - Deep-sea operation (vessels, procedures, reliability, safety ...)
- Neutrino telescopes pose new challenges:
 - Continuous connectivity
 - Interactive operation
 - High-bandwidth data connections
- Cooperation helps and provides new opportunities



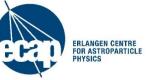
String deployment concept developed by NIOZ: Successful test Dec. 2009


Deep-sea wisdom for neutrino hunters


- What do we know about the deep-sea environment and how do we measure what we don't know?
- Which phenomena will/can/may interfere with the neutrino telescope operation?
- Which components or operations could be environmentally problematic?
- What needs to be done when the neutrino telescope has reached its end of operation?

Future deep-sea observatories in Europe

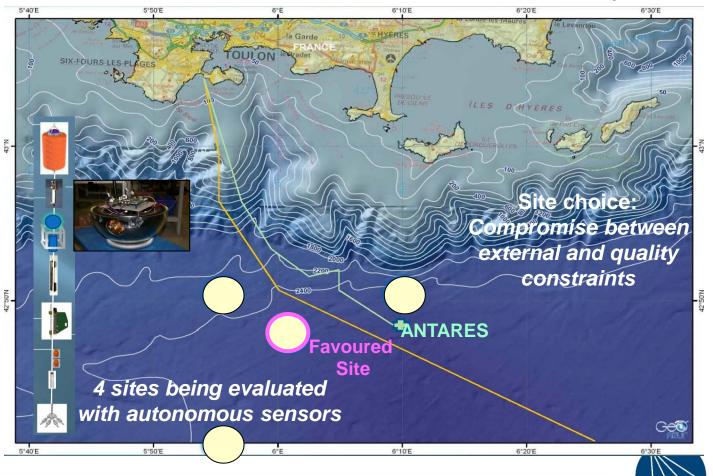
- EMSO: 11 nodes
- 3 in Medit.
 Sea (all KM3NeT candidate sites)



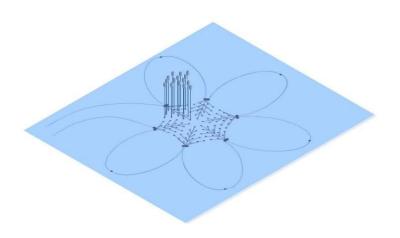
Why in the Mediterranean Sea?

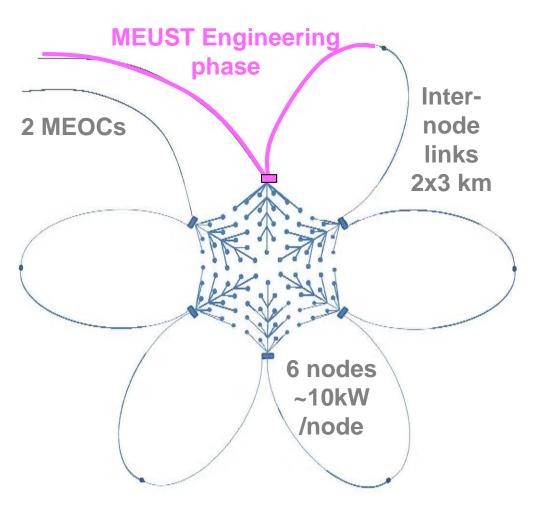
- Many earth sea science questions are likely to be site specific.
 The Mediterranean Sea is unusual:
 - The straits of Gibraltar isolate it from global ocean circulation, so observations are not representative.
 - The deep water is warm
 - Biological activity is low compared with open ocean

Courtesy M. Priede


- What can be done in the Mediterranean Sea?
 - Experiments that are not location sensitive (depth only is a concern);
 - Experiments that are substrate/slope specific, e.g. studies on sediment mechanics;
 - Location specific experiments: e.g. measuring seismicity at Etna, Ocean drilling program boreholes, studies at extreme depth at Pylos, mud volcanoes, ... (not necessarily compatible with NT site requirements, high-resolution mapping will be necessary to identify such features);
 - Regional experiments; e.g. Ionian sea deep plankton or Rhone delta outflow effects (Ligurian Sea);
 - Network of deep water sensors on a grid throughout the Mediterranean.
 The KM3NeT site(s) could contribute one or few of these.

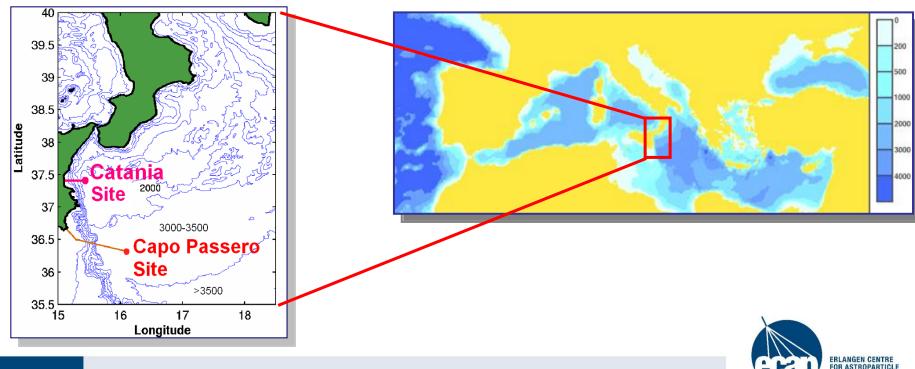
The MEUST project

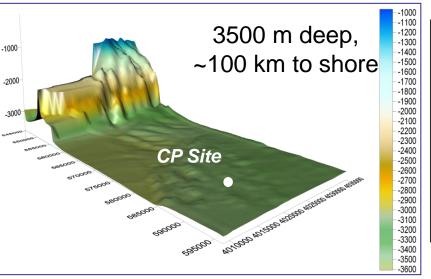

MEUST goal:


Deploy a 2nd-generation shared submarine observatory offshore of Toulon, within the framework of the future KM3NeT and EMSO European networks

A possible sea floor network layout

- Nodes provide connectivity to NT and E&S instruments
- Long inter-node links allow for node maintenance

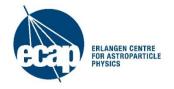




Activities and plans in Italy

- Candidate site for KM3NeT: Capo Passero (3500 m) Cable and shore station ready, construction activity ahead
- Plan: Construct research infrastructure for neutrino astronomy and earth & sea science
- Test site near Catania (2100 m) bioacoustics, geophysics

The Capo Passero site


Shore laboratory operational:

- On shore power supply 10 kV / 50 kW
- Submarine cable and infrastructure (100 km / 20 fibres, DC-sea return, DC/DC Converter 10 kV/375 V)
- Optical-fibre link to high speed internet
- Construction hall, data acquisition room, guest house

Strategic considerations

- Common usage of infrastructure requires common planning and management
- Continuous consultations are necessary
- The specific characteristic of the site (Mediterranean Sea) needs consideration
- Synergies in science and technology should create synergies in funding
- Are we doing enough to emphasise the synergies and use the multidisciplinary aspects as arguments in our favour?

