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» Motivation - RF breakdown in cavities
> Field enhancements of tips vs cracks
> Schwirzke model of unipolar arc

> Plasma fueling by surface sputtering
> Plasma model of RF BD

» Modeling non-Debye plasma sheath
> Summary of the Arc model

> Other applications and future plans
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FE multi-physics simulation

= Comsol simulation vs analytical theory of field enhancement
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Field Enhancement by cones

* Comsol simulation of field enhancement at sharp cones
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= Comsol simulation of field enhancement at triple crack junction

Slice: Electric field, norm [V/m]  Arrow: Electric field Max: 138.348
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Experimental
enhancement factor
obtained from dark
current
measurements:

ﬂexp ~ 184

is close to values for
a triple junction:
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X rays show that cavities break
down at E,., ~ 7-10 GV/m

Dark current experiment

Arc
~mm
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Fowler-Nordheim field emission (1928)
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Schwirzke model of Unipolar Arc

Arggmge model in Tokamaks
Heating occurs via ion bombardment. Tokamak Plasma
Plasma fueling:
= Evaporation of surface atoms n~10%2 m3
= Tip explosion by high electric field @
® ®
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Sputtering Yield, 1/ion

& Self-sputtering at high T and E

Argonne
16 Self-sputtering yield of a charged by plasma
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Self-sputtering is the mechanism for fueling unipolar surface plasma.
Unipolar model requires Y > 10 typical at low ion energies.

MD predicts very high sputtering yields for high surface T and E.
Erosion rates on the order of ~ 1 m/s.

[Insepov et al, NIMB, 2010] B ERERGY
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* Typical parameters for self-sustained self-sputtering

Superdense glow discharge in pseudospark
(hollow Mo cathode filled with H,)

Heating occurs via ion bombardment.
Plasma fueling:

= Evaporation of surface atoms

= Tip explosion by high electric field

n, ~10*m>,
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[A. Anders et al, J. Appl. Phys. (1994)]

RF breakdown on Copper surface

Heating via ion bombardment.
Plasma fueling:

= Evaporation of surface atoms

= Tip explosion by high electric field

[Insepov, Norem (2008)]
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Simulation showing how rf arcs start (805 MHz)
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We have to develop a model that explains unipolar arcs

This seems to be the basic physics that governs gradient limits.

In rf systems the arcs develop from fracture and ionization of surfaces.

Lasers, micrometeorites, and other causes can also generate them.

The arcs are exothermic, develop rapidly and become non-Debye plasmas.
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Classical molecular dynamics (MD)

simulations with a e-i pseudo-potential Molecular Dynamics Simulations of
to account for quantum effects Nonideal Plasma Sheath at the Metal Surface
Two component plasma of electrons periodic boundaries

y electric field on x and y axes

and copper ions
charged

. . tal surf:
Long range Coulomb interactions (N- ™7 7% e © Q ‘/. ® @ o°,
body problem) — s ®
°Q ° o . ° o (O
. . . Q o -
Periodical boundary conditions for Q @ % ° ’ ol
. . x ¥

transversal dimensions é o @ . o

Ideal absorption of electrons to the

surface with generation of the surface s z
. . metal plasma homogeneous

electrostatic field cheath "% netiel Nl oi

Simulation of the relaxation process L;;;jj

Averaging over an ensemble of initial
states

[Accepted for publication in PR STAB, 2012]
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Test potential
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Electron-electron and ion-ion potentials are pure Coulomb. The erf-like electron-ion interaction potential given
above was used e.g. for simulations of sodium clusters in Raitza et al, Contrib. Plasma Phys (2009).

‘f‘i'*t,& U.S. DEPARTMENT OF
%/ ENERGY



agonne®  E-field and density vs time
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Stationary plasma sheath

1.2 1+
{ n/n, - o, int. units
1= ]
0.8 . -
i 0.1 4 exponential fit
06— ——glectrons . E o exp(-z/xexp)
| ] Aexp = 0.43nM
| - width at
0.4 . 1/e level o
i A =1.04nm statistical
| fluctuations
o2 0.01 =
| Z, NM ]
0 ] L — 77—
0 1 2 3 4 0 1 2 3 Z, NM 4

T,=1eV, n,=10°"m3, T =232

i{«‘:”g“ U.S. DEPARTMENT OF
%/ ENERGY



agomne®  Stationary plasma charge
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The solid line is an exponential fit — the classical Debye law at 1eV.
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agomne®  Screening length vs density
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A Direct simulation of plasma
Argonne sheath formation

We simulated the development of the arc and its density limits

Non-ideal (non-Debye) plasma were T, | n,1e27,| I 6 Ao
simulated in a wide range of 6, T,n. | €V m-3 nm
The electric field and charge build up : le-4 [0.11] 0.001 | 235
is determined 1 | 1e-3 |0.23| 0.004 | 7.43

The electrical field close to Debye

1 le-2 0.5 0.017 2.35
predicted in most part of the sheath

space 1 0.1 |1.08| 0.079 | 0.74

The non-classical deviation is at very 1 1.0 2.32| 0.36 0.24

close proximity of the surface 10 001 |oos!| ooo2 | 743

lons were takes into account in

specific approximation 10| 1.0 |0.23| 0.036 | 0.74

10 100 1.08 | 0.79 0.07
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] Microgeometry depend. Are; Jm KW

Arc Mechanisms Coulomb Explos. e beam:

Evolution of ionization A, MW

Mass Thresholds _ .
Fracture Space pot. evolution Laser Ablation
Ohmic heating Neutral gas density e beam welding
Polarity dependence Trapped elec‘rr‘ons Y Micrometeorites
Creep / Fatigue R Tokamak edges
Material dependence Classical Unipolar Arc
Surface modification . 4
Adsorbed gas Plasma s g ™
Oxides Stored energy
Mechanical stress/strain /-) Initiation Frequency dependence
DC/rf comparisons ot~ MRREAEY Fueling
BD rate(E) self sputtering etc
FE, RD emission I(E,T) Surface Gr'adlen’r “Exponenﬂql" temp dependence
Space charge limit Failure PEEN lasma arowth | €5 ion wall heating
Thermal dependence [E 1ocal ~ 8 GV/m] leITS P ) 9 line radiation heating
Weighted aver. of Esurf (Al el ohmic heating

Hollow beams v Magnetic fields
Ton etching
Surface Expl. Elect. Emis, ectons
Damage Plasma growth times
[s(B) ~ exp (-0.03 B)] Cavity discharge time

¢ Cavity discharge current,

how it is absorbed

interactions with B
Space charge limits
Liquid surface stability
Particulate generation

Unipolar arc Unipolar arc physics

Ablation mechanisms
4 Enhancement Spectra
Crack formation Unipolar arcs

Physical dim. of asperities Are electronsto wall
max - damage equilibrium /
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agorne®  Other applications of arcing
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* We are beginning to develop parameter sets for these cases:
 Tokamak edge plasmas
 Large surface area and long DC pulses.

This model predicts breakdown will occur atE,_,, >5 — 6 GV/m.

. (Ap)B ~ 6 GV/m
. With a 100 eV sheath potential, and A, ~ 6 um gives,
. B~ (6 GV/m)(6E-6m)/(100 eV) ~ 400,

* Laser Ablation, micrometeorite impacts

* Tiny areas and very short DC pulses.

 Dense plasmas can appear and arcs must trigger more quickly.
With Ay~ 0.1 pm,

. (Ap)B~ 11 GV/m,

. ¢~ (11 GV/m)(1E-7m)/30 ~ 40 eV

* These arcs would have similar parameters and would develop as
described above
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A Future Plans for unipolar arc
Argonne studies
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In rf systems, the arcs occur randomly, and therefore cannot be studied.
Triggered unipolar arc can be studied in specifically designed experiment.

We are interested in:

Oscillations
— How do they depend on material, B field, size and other variables?
— Does the ecton model or FE model look more realistic?
 What parameters determine unipolar arc behavior
— Cohesive energy (sublimation energy) Tmelt, hardness, ionization potential.
— Can the maximum density, (maximum E field etc.) be measured?
 What determines the surface damage?
— What causes pits, cracks, “chicken track” formation? EEE?
 How do magnetic fields interact with unipolar arcs
— Both formation & stability of the arc
*  What threshold determines unipolar arc formation?
— Can “subcritical”, “unlit” arcs make tracks (CERN “worms”)

‘f‘f‘ﬂ% U.S. DEPARTMENT OF
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Sheath potential formation was simulated for the
15t time.

Picture of arcs becomes simpler and more general
(Tokamaks, laser ablation, micrometeorites).

We find electrostatic fields can both trigger and
drive arcs.

Materials properties are the clue for understanding
of unipolar arc formation and rf breakdown.

We are exploring new applications and constraints
on our model, with a number of papers underway.
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PMT signal (arb. units)

FFT magnitude (arb. units)

@ Feasible model of oscillations at rf
Argonne breakdown
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805 MHz PMT signal Field emission shorting plasma sheath
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We can explain the oscillations we see in rf breakdown
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Capillary waves can measure surface fields

* Dimensions of structures imply E ... ~ 1 GV/m, if P

surface tension — PEIectrostatic'
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