International Workshop on Breakdown Science and High Gradient Technology April 19, 2012, KEK,Tsukuba

High gradient performance of C-band accelerator in SACLA

SPring-8 Angstrom Compact Free Electron Laser

Takahiro Inagaki RIKEN SPring-8 Center on behalf of C-band group

<u>"SPring-8"</u>

8 GeV storage ring World's largest SR light source

"SACLA"

8 GeV linac and undulators World's shortest wavelength (>0.06 nm) laser

1) Overview of C-band accelerator system

2) Operational status

~ Accelerating gradient and trip rate ~

3) Dark current

4) Summary

X-ray FEL

Compact XFEL facility "SACLA"

X-ray FEL

- Total length: 700 m (LCLS: 2 km, European XFEL: 3.5 km)
- Low construction cost ~ 450 M-USD

Based on 3 key technologies;

Why we use C-band ?

X-ray FEL

High accelerating gradient

- Nominal operation $E_{acc} = 35 \text{ MV/m}$
- E_{surface} ~ 100 MV/m Achievable with present technology
- 8 GeV / 35 MV/m ~ 230 m
 (+ Injector + chicane ~ 400 m)

Normal conducting RF

- No cryogenic system
- Repetition (60 pps) is suitable for experiments (CCD frame rate).

<u>Components are available</u>

 Initially developed at KEK for the linear collider project

C-band (5712 MHz) RF system

SACLA

To obtain high accelerating gradient

X-ray FE

- Withstand high electrical field
- Low dark current, for undulator irradiated demagnetization
- Lower surface field
 - Cavity design
- Good cavity surface
 - High quality copper, no void, no contamination
 - Clean fabrication, no dust, no oil
 - Clean assembly and installation
- Lower peak RF power
 - Pulse modulation

C-band choke-mode type accelerating structure

X-ray FEL

Length	1.8 m
Number of cell	89 + 2 coupler
Accelerator type	TW, 3π/4 mode quasi-CG structure
Shunt impedance	49 – 60 MΩ/m
Attenuation constant	0.53
Filling time	300 nsec

Disk thickness: 4 mm, R=2 mm Lower surface field (E_{max} ~100 MV/m)

Iris aperture: 2a=13.6~17.3 mm Lower emittance growth Alignment tolerance ~ 100 μm

Choke-mode structure (T. Shintake, 1992) HOM damping for the multi-bunch operation. Copper

- OFC class-1, hot iso-static pressing (HIP)
- Machining
 - High precision lathe, with diamond bit, without lubricant oil

Fabrication of the structure (2007-2009)

- No electrochemical polishing, no rinsing (because of the choke-structure)
- Vacuum brazing
 - Assembly in the clean room
- Inspection
 - Bead measurement, no cavity tuning (dimpling)
 - Out gas measurement

RF pulse compressor (SLED)

X-ray FEL

Cavity RF mode	TE0,1,15
Q ₀	185 k
β	9 ~ 9.5
VSWR	<1.05

Mode converter

4 coupling holes reduce the iris field

Tuner Diaphram structure with differential screw

Amplitude modulation for the peak power suppression

X-ray FEL

Phase reversal and amplitude modulation at LLRF

Klystron output ~ 38 MW

	Peak power	Average in 300 ns
Ideal	248 MW	171 MW
FIR filter	224 MW	167 MW
AM100ns	204 MW	166 MW
AM 300ns	135 MW	128 MW

Suppress spiky peak power,

Energy multiplication factor E_{acc} (w/ SLED) / E_{acc} (w/o SLED) ~ 2

Filling time of accelerating structure $t_{r} \sim 300$ nsec

History of C-band high power operation

X-ray FEL

First high power test
 without SLED, E_{acc}=33 MV/m
 2007 250 MeV prototype accelerator —
 daily operated with E_{acc}=37 MV/m

2008-2009 High power test confirm the quarity of mass-production, E_{acc}=42 MV/m

2009-2010 Installation

- 2010 RF conditioning started at SACLA After 500 hours of RF conditioning,
- 2011 Beam commissioning started
- 2012 X-ray user experiments started Total RF run time ~ 8000 hours

Trip rate during the conditioning process

X-ray FEL

RF conditioning effectively reduces the trip rate.

Accelerating gradient

X-ray FEL

X-ray 12~17 keV, beam 8.3 GeV, $E_{acc} \sim 37$ MV/m ($E_{max} \sim 104$ MV/m) 10~13 keV, 7.8 GeV, 34 MV/m (95 MV/m)

Trip rate in 7.8 GeV (34 MV/m) operation

X-ray FEL

Main source of trip is thyratron (self-discharge). RF breakdown rate is much lower (3x10⁻⁸ BD/pulse/m).

Trip rate in 8.3 GeV (37 MV/m) operation

X-ray FEL

RF breakdown rate (2x10⁻⁷ BD/pulse/m) is acceptable in 10 pps operation.

Accelerating gradient vs. trip rate

X-ray FEL

- RF breakdown rate is still high at over 38 MV/m

- Other trip do not depend on the high voltage.

After measurement with 116 hours, the trip rate is 30 % decreased.

We plan to do further RF conditioning for energy upgrading.

Courtesy of T. Sakurai (IPAC'10)

Dark current measurement at the test stand

X-ray FEL

Measured by the electrical charge at the beam dump

Order of 10 pC/pulse of dark current was observed.

One unit of C-band accelerator

Dark current measurement at SACLA accelerator

X-ray FEL

SACLE

Actually the dark current is not the problem for the beam operation.

Summary and prospect

X-ray FEL

Since 2011, 64 units of C-band accelerator has been well operated for X-ray FEL, to accelerate beam up to 8.3 GeV, with an average gradient of 37 MV/m.

- RF breakdown rate is low enough for 8 GeV (~35 MV/m) beam operation.
- For 8.3 GeV (37 MV/m), the trip rate is acceptable for 10 pps operation, although we plan to decrease the trip by further RF conditioning.
- We plan to increase the repetition 10 pps → 60 pps, after fixing other problems (thyratron, power supply,...).
- Dark current is actually low enough and no problem.

Spare slides

8 GeV XFEL Machine Layout

64 klystrons, modulators, and control cabients are installed in the klystron gallery

Klystron 50 MW + = = E * 安 **Modulator** 350 kV 110 MW 1.2 m **Inverter-type** HV charger 50 kV 1.7 m 1 m 35 kW Stability ~ 10 ppm (STD) 4 m / 1 unit

Stability of RF and beam energy

X-ray FEL

Short term (10 minutes) stability (rms) of RF after C-band structure

	Tolerance		Measurement	
	Voltage	Phase	Voltage	Phase
238 M SHB	0.01 %	0.01°	0.010 %	0.006°
476 M Booster	0.01 %	0.02°	0.004 %	0.009°
LB Correction	0.03 %	0.06°	0.02 %	0.02°
L-B APS acc. 1	0.01 %	0.06°	0.06 %	0.03°
L-B APS acc. 2	0.01 %	0.06°	0.03 %	0.05°
C-B Correction	0.2 %	0.06°	0.06 %	0.05°
SB 1 acc. 1	0.01 %	0.1°	0.04 %	0.03° 🗸
CB01-1 acc.1	0.01 %	0.2°	0.05 %	0.03°

within the measurement accuracy

Energy stability after the 7 GeV acceleration, measured by RF-BPM at chicane.

Shot-by-shot 1.4×10^{-4} (rms) Drift < 1 x 10⁻⁴ with energy FB

Courtesy of T. Ohshima (PASJ-2011)

Courtesy of H Maesaka (2011)