Nextef results & status

International Workshop on Breakdown Science and High Gradient Technology KEK, Japan

> 18 April 2012 Toshi Higo

Contents

- Status of Japan and KEK under recovery
- Normal conducting X-band studies at KEK
- Comparison of four CLIC prototype structures
- Undamped prototype T24 result
- Damped prototype TD24 result (in operation)
- CLIC pulse operation
- Effort to identify trigger source leading to suppress breakdowns

Status of Japan under recovery

- One year has passed since 11 March, 2011
 - Still frequent earthquakes, but frequency decreasing
- East Japan under recovery
 - From Tsunami disaster
 - Establish to be safe against Tsunami
 - Reforming the north-east area
 - Assignment as a special area for science
- Japan under recovery and reform
 - Fukushima nuclear plants
 - National trend toward reducing nuclear plants
 - Government approval of restarting operation

Seismic intensity = 6- at Tsukuba on 11 March, 2011

Recent earthquakes in Japan in a week (April 6—13)

We still suffer from frequent earthquakes with seismic intensity of 2~3.

One of the candidate site of ILC in Japan is located in north-east Japan, no big one in several hundred years.

Status of KEK under recovery

- One year has passed since 11 March
- KEK facilities were quickly recovered
 - J-PARC
 - Injector linac
 - ATF, STF, Nextef,
- KEK Tsukuba site strategy
 - Recovery budget was approved
 - Recovery with reinforcement against earthquakes
 - Injector linac is being recovered with various improvement, naturally be suited for SuperKEKB

Normal conducting X-band studies at KEK

- X-band as a main project of KEK until ITRP 2004
 - 60cm accelerator structure to confirm operation at 65 MV/m unloaded
- Continue high gradient as a basic research for accelerator
- Join CLIC collaboration
 - 22cm accelerator structure targeting the operation at 100 MV/m unloaded
- Continue and go into a stage
 - To identify the trigger of breakdowns and understand initial processing, operation period, later aging,
 - Studies to improve initial conditioning and nominal performance and to suppress deterioration through operation
- The present workshop is one of the step to this end

Nextef

Comparison of four CLIC prototype structures

CLIC test structures; a series of fabrication and test T18 → TD18 → T24 → TD24

T18_Disk_#2

undamped

2009

2011 2011~12

TD24_Disk_#4

6789101234567892012345878930123456789401234567

SLAC/KEK typical fab/test flow

Difference in processing speed among four structures

Breakdowns are needed or can be avoided?

High Gradient Workshop (Higo)

Alexej Grudiev

Reduced magnetic field 18 \rightarrow 24

Undamped T24 T24 was found much better than T18

Faster processing Reached low breakdown rate

T24#3 Breakdown rate at 252nsec

Damped TD24#4 at 252ns

Lines are only for guide for eye and drawn all with the same slope as that of T24 at 40 hr. 2012/4/18 High Gradient Workshop (Higo) 17

More frequent breakdowns in longer pulse

TD24#4 BDR

Nominal CLIC pulse

Only 3 breakdowns in 484 hour operation with CLIC pulse at FLT=100MV/m

1.6x10⁻⁷ bpp/m

CLIC pulse at 110 MV/m till to date

Operated for 77 hours and encountered 41 ACC-BD.

It results in 1.4X10⁻⁵ bpp/m.

BD's are bunched in time. BD's are mostly associated with first-pulse BD's.

TD24#4 BDR with CLIC pulse at FLT=100MV/m

Single-cell studies in preparation or in mind

- Explore basic research in a simple geometry
- Center cell is such as the following
 - 1. Standard: KEK made SLAC test
 - 2. Nominal: Heavily-damped
 - 3. Made of large-grain material
 - 4. Undamped but all-milled
 - 5. All milled quadrant type
- These are under preparation

6. Choke-mode type

Basic study setups

High field only at center cell

Crystal characteristics

Clean setup

Preparation of setup in shield-B

Scanning field emission microscope being under development at KEK

Field emission and surface of crystal characteristics.

Conclusion

- Four CLIC prototype structures have been tested, each for a few thousand hour scale.
- Improved performance was given with TD24 type.
- CLIC pulse operation met the required BDR for CLIC at FLT=100MV/m.
- Basic research area is under construction, expecting to start test in a month or so.
- All of KEK members suffer from the huge work for SuperKEKB until the commissioning in 2014.
- We want to keep the basic research activity.
- We also want to consider a klystron based compact LC for Higgs.
- We want to expand X-band based applications, but after SuperKEKB.