Directions for CLIC structures: Lower energy machines and overview of damping alternatives

A. Grudiev 18/04/2012 HG2012, KEK Tsukuba

Outline

- 3 TeV and lower enegry CLIC structures
 - Structure tapering
 - Single feed coupler
 - 500 GeV structure
 - Intermediate energy structure
- Overview of the damping alternatives
 - DDS
 - Choke mode damping

Motivations 3 TeV CLIC structure

- The CLIC_G structure has been designed in 2008. We have learned a lot since then **but** the structure is not tested yet and we cannot say for sure if it satisfied CLIC requirements or not.
- 2. All what we learned so far indicate that CLIC_G is on the edge. We need a reliable test results in order to see where is(are) the weak point(s) of CLIC_G, then we can try to improve it.
- 3. Moreover, CLIC parameters are frozen since 2008. There is no need in a design of a new structure with different parameters (length, aperture, gradient, etc.).
- 4. In summary, there is no strong motivation on the new RF design, nevertheless, several new structure prototypes are being designed along two lines:
 - a. improve high gradient performance for the same bunch charge by tuning the structure tapering
 - b. simplification of the associated RF network by introducing compact couplers with single feed (CCSF)

Maximum average gradient versus tapering

If we forget for the moment about the hot cell #7, the BDR is higher in the last cell, where field quantities are higher.
N.B., in T24, the BDR distribution is more flat but there are also other differences

• What is the optimum tapering ?

Const unloaded versus const loaded gradient ?

We will try to answer this question in the dedicated test in 'dog-leg' area in CTF3 (2013)

See more on the different tapering design at LCWS2011, Granada: http://ilcagenda.linearcollider.org/contributionDisplay.py?contribud=80&sessionId=19&confid=5134

Alternative layout of CLIC SAS based on compact coupler with single feed (CCSF)

500 GeV CLIC structure: CLIC_502

Preliminary design is done in 2008

		_
Case	3TeV nominal	500 GeV 1 st stage
Structure	CLIC_G	CLIC_502
Average accelerating gradient: <e<sub>a> [MV/m]</e<sub>	100	80
rf phase advance: Δφ[º]	120	150
Average iris radius/wavelength: $\langle a \rangle / \lambda$	0.11	0.145
Input/Output iris radii: $a_{1,2}$ [mm]	3.15, 2.35	3.97, 3.28
Input/Output iris thickness: $d_{1,2}$ [mm]	1.67, 1.00	2.08, 1.67
Group velocity: $v_g^{(1,2)}/c$ [%]	1.66, 0.83	1.88, 1.13
N. of reg. cells, str. length: N_c , l [mm]	24, 229	19, 229
Bunch separation: N_s [rf cycles]	6	6
Luminosity per bunch X-ing: $L_{b\times}$ [m ⁻²]	1.22×10 ³⁴	0.57×10 ³⁴
Bunch population: N	3.72×10 ⁹	6.8×10 ⁹
Number of bunches in a train: N_b	312	354
Filling time, rise time: τ_f , τ_r [ns]	62.9, 22.4	50.3, 15.3
Pulse length: τ_p [ns]	240.8	242.1
Input power: P _{in} [MW]	63.8	74.2
$P_{in}/Ct_{p}^{p}^{1/3}[MW/mm ns^{1/3}]$	18	17
Max. surface field: <i>E</i> _{surf} ^{max} [MV/m]	245	250
Max. temperature rise: ΔT ^{max} [K]	53	56
Efficiency: η [%]	27.7 39.6	
Figure of merit: $\eta L_{b\times}/N$ [a.u.]	9.1	3.3

RF design of CLIC_502 prototype using ACE3P

Intermediate energy CLIC (1.5 TeV?)

- For the staged approach there will be a set of parameters to be optimized at an intermediate energy ~1.5 TeV taking into account cost and performance of CLIC.
- As a consequence, there probably will be a new accelerating structure for the CLIC main linac to be designed in the near future.
- This work is just taking shape in the CLIC staged approach working group lead by Daniel Schulte

Outline

- 3 TeV and lower enegry CLIC structures
 - Structure tapering
 - Single feed coupler
 - 500 GeV structure
 - Intermediate energy structure
- Overview of the damping alternatives
 - CLIC DDS
 - Choke mode damped CLIC_G
 - Comparison to waveguide damped CLIC_G

Roger M. Jones Cockcroft Institute and The University of Manchester

Choke mode damped CLIC structure Jiaru Shi, Hao Zha (Tsinghua University)

to

Enormous progress in wakefield suppression from

more

See

CLIC_Main Linacs Multi-bunch wake effect in various damping schemes

Vasim Khan 07.03.2012 CLIC RF structure group meeting, CERN

D. Schulte, PAC09, FR5RFP055

$$a_{k} = i \sum_{j} \frac{L_{j} \beta_{j}}{2E_{j}} W(z_{k}) Ne^{2} \approx 380m^{2} GeV^{-1} W(z_{k}) Ne^{2} \qquad a_{1} \approx 1.5 \qquad \text{In CLIC_G}$$

Kick on only following trailing bunch

ר ר

$$F_{c} = \frac{1}{n} \sum_{k} \left| \sum_{j} A_{kj} \right|^{2}$$

$$F_{rms} = \frac{1}{n} \sum_{k=0}^{n-1} \sum_{j=1}^{k} A_{k,j} A_{k,j}^{*}$$

$$F_{rms} = \left(1 + \sum_{i=0}^{n-1} A_{0i}^{2}\right) \approx 4.9$$

$$F_{worst} = \lambda_{1}^{2} \approx 20$$

$$F_{worst} = \lambda_{1}^{2} \approx 20$$
Vasim Khan
$$F_{rms} = CLIC RF structure group meeting, CERN$$

$$F_{rms} = CERN$$

$$F_{rms} = CLIC RF structure group meeting, CERN$$

$$F_{rms} = (1 + \sum_{i=0}^{n-1} A_{0i}^{2}) \approx 4.9$$

$$F_{worst} = \lambda_{1}^{2} \approx 20$$

TD26_vg1.8_discR05_CC: GdfidL simulations with PML

Amplification factors

Alternative designs preliminary results

Wake (with phase information) $nb_{311} = \{F_c, F_{rms}, F_{worst}\} = \{357.924, 31.6057, 1094.08\}$ Envelope Wake $nb_{311} = \{F_c, F_{rms}, F_{worst}\} = \{1515.58, 151.144, 6480.98\}$

CERN and Uni. Manchester + C.I. collaboration

Structure	Wake (with phase information)			
	F _c	F _{rms}	F_w	
DDS_A	1.29 x 10 ²⁴	1.25 x 10 ²⁷	1.32 x 10 ²⁸	
8 x DDS_A	3.4 x 10 ⁵	2.8 x 10 ⁷	7.5 x 10 ⁸	
8 x DDS (Circular cells)	6573	5 x 10 ⁶	1.55 x 10 ⁸	

Vasim Khan

CLIC RF structure group meeting, CERN

07.03.2011

Comparison damping scheme alternative

Structure	CLIC_G_WDS	CLIC_G_CDS	8 x DDS* (Circular cells)
Average accelerating gradient: $\langle E_a \rangle$ [MV/m]	100	100	100
rf phase advance: Δφ[º]	120	120	120
Average iris radius/wavelength: $\langle a \rangle / \lambda$	0.11	0.11	0.126
Input/Output iris radii: <i>a</i> _{1,2} [mm]	3.15, 2.35	3.15, 2.35	4.0, 2.3
Input/Output iris thickness: <i>d</i> _{1,2} [mm]	1.67, 1.00	1.67, 1.00	4.0, 0.7
Group velocity: $v_g^{(1,2)}$ /c [%]	1.66, 0.83	1.38, 0.73	2.06, 1.07
Bunch separation: N_s [rf cycles]	6	6	8
Bunch population x number of bunches: N x Nb	3.72×10 ⁹ x 312	3.72×10 ⁹ x 312	4.2×10 ⁹ x 312
Input power: <i>P_{in}</i> [MW]	63.8	67.8	73
Max. surface field: E_{surf}^{\max} [MV/m]	245	246	320
Max. temperature rise: ΔT ^{max} [K]	53	23	72
Efficiency: η [%]	27.7	24.5	23
F _c	1.06	80	6573
F _{rms}	6	15	5 x 10 ⁶
F _w	26	1300	1.55 x 10 ⁸

Summary and Outlook

Several new structure prototypes are under consideration which have a potential of improving CLIC_G performance or/and cost

- 500 GeV structure prototype RF design is under way
- Both new high-gradient test results for CLIC_G and possible reconsideration of CLIC parameters can significantly change motivations and the boundary conditions for the CLIC accelerating structure design.

Alternative damping structures show promising results but more work still to be done to arrive to a complete solution satisfying CLIC requirements