Development of new RFQs for J-PARC

Takatoshi Morishita, Yasuhiro. Kondo, Kazuo Hasegawa, JAEA, JAPAN Takashi Sugimura, Hiroshi Kawamata, Fujio Naito, KEK, JAPAN

Parameters	RFQ I:	RFQ II:	RFQ III:
	operating	spare of RFQ I	in production
Beam current [mA]	30	\leftarrow	50
Frequency [MHz]	324	\leftarrow	\leftarrow
Acceleration energy [MeV]	0.05 to 3	\leftarrow	\leftarrow
Vane length [m]	3.1	3.1	3.6
Inter-vane voltage[kV]	82.9	\leftarrow	81
Max. surface field [MV/m]	31.6(1.77 Kilpatrick)	\leftarrow	30.7(1.72 Kilpatrick)
Ave. bore radius [mm]	3.7	\leftarrow	3.5
Vane-tip curvature [mm]	0.89r0 (3.293mm)	\leftarrow	0.75r0(2.617mm)

Engineering design	RFQ I	RFQ II & III
Cavity material	OFC with 0.2% Ag	OFC + HIP(Hot Isostatic Pressing)
Joining method	Bolted with RF contactors in the vacuum chamber	Vanes, ports for vacuum, tuners, and flanges are brazed.
Vane machining	2D machining with wheel- shape formed bite	NC machining with conventional ball-end mill
Surface treatment	Acid wash	Chemical polishing

\$\dpsi \text{plane}\$ \$\delta \text{plane}\$ \$

Vane machining using the ball-end mill

•The stage moves in a horizontal plane and the end-mill moves vertical. The main feed direction of the stage is the longitudinal direction.

Surface roughness Longitudinal direction Transverse direction 1.2mm

- •The surface roughness is typically 0.8 μm (Ra)
- The curvature of the ball-end mill is 5 mm.

Surface treatment (chemical polishing)

Lightly-polished (less than 10 mm) surface seems well.

Grain-boundary configuration appears at over-polished.

Surface roughness after chemical polishing # 4 Before polishing 3µm polishing 10µm polishing

polishing.