
Floating Point Issues
in Data Analysis

Lorenzo Moneta
CERN, PH-SFT

CERN/Intel workshop on Numerical Computing
February 7-8, 2012, CERN 1

Introduction
Floating Points

fl(x) = x(1 + ε)
fl(x op y) = (x op y) (1+ ε) op = +,-,/,*

single precision (32 bits), u = 2-24 ≈ 6 ×10-8

double precision (64 bits): u = 2-53 ≈ 1.1×10-16

relative error on result can be much larger
e.g. fl(x-y) ≲ ε (|x|+|y|)/(|x-y|) large for x ~ y

fl(fl(x+y) + z) ≠ fl(fl(x+z) + y)
32 bits vs 64 bits architectures

in 32 bits arch. operations done in double extended
precision (t = 64), but stored as double in memory

2

✏ u =
1
2
�1�t

IEEE 754

Scaling
Importance to try to keep numbers around 1

Better to apply a linear transformation to the data to
have location and scale around 1

Non-sense using for observables units not close to 1
(e.g use GeV instead of eV)

scale is defined by physical quantities (e.g. detector
resolution)

use reasonable ranges

3

do not use here a scale from
1.x109 to 10x109 (eV)

M (GeV)
1 2 3 4 5 6 7 8 9 10

250

300

350

400

450

500

550

600

Histogram Example

Computing the sample variance is numerically difficult
when μ << σ

Normally s2 and μ computed with one pass

numerical error when making difference of two
positive numbers

A possible solution is to accumulate

Standard Deviation

s

2 =
NX

i=1

(xi � µ)2

N

=
NX

i=1

x

2
i

N

�

NX

i=0

xi

N

!2

M1 = x1 Mk = Mk�1 +
xk �Mk�1

k

�! µ̂ = MN

S1 = 0 Sk = Sk�1 +
(k � 1)(xk �Mk�1)2

k

�! s

2 =
SN

N

4

Example: Histograms
Histogram classes in single (TH1F) and double precision (TH1D)

axis always represented in double precision
choose correct bin boundaries

single precision often enough
save memory for large multi-dim histograms

double precision often not really needed (apart from cases with
large number of counts/bin)

provided also a TH1I (integer bin content)
if memory is not an issue, better always to use double precision

5

0 2 4 6 8 100

10

20

30

40

50
Example Histogram

ibin = int
✓

nbins
x� xMIN

xMAX � xMIN

◆

Matrix and Vector Libraries
ROOT Mathematical Libraries provide:

Template vector and matrix classes (in any dimension)
e.g. SMatrix< N, double>

Template classes for geometry and physics vectors
e.g. LorentzVector<PxPyPzE4D<double> >

classes can be used in single and double precision
Often no need double precision for measured quantities
(observables)
Simple mathematical computations could be done in single
precision

faster if using vectorization
Need double precision for transformation (e.g. rotation) or when
performing large summation

6

Math and Stat Functions
All Math functions provided in double precision

maybe (for some dedicated cases) a faster single-precision
function could be needed

Example: statistical functions:
provide cumulative and its complement:

Same for the inverse of cumulative (quantile)
normal_quantile(p, !) and normal_quantile_c(p, !)

significance n! = normal_quantile_c(p, !)
7

x
-5 -4 -3 -2 -1 0 1 2 3 4 50

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ROOT::Math::normal_pdf(x,1,0)

normal_cdf(x,!) and
normal_cdf_c(x,!)
instead of just using
1.0 - normal_cdf(x,!)

Function Minimization
One of the most used algorithm in data analysis

Function minimization is needed in statistical analysis

fitting data points (non-linear least square fits)

maximum likelihood fits (parameter estimation) and
for error analysis (interval estimation)

likelihood

minimum of

L(x|✓) =
Y

i

P (xi|✓)

� log L =

X

i

log P (xi|✓)

8

Example: Higgs Searches
Higgs search results require numerous minimization of
complex likelihood functions (> 200 parameters)

)2Higgs boson mass (GeV/c
100 200 300 400 500 600

SM
σ/

σ
95

%
 C

L
lim

it
on

-110

1

10

 ObservedSCL
σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

 ObservedSCL
σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary, ObservedSCL

σ 1± Expected SCL
σ 2± Expected SCL

Bayesian Observed
Asymptotic CLs obs

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary,

9

MINUIT Algorithm
Migrad based on Variable Metric algorithm (Davidon)
Iterate to find function minimum:

start from initial estimate of gradient g0 and Hessian matrix, H0

find Newton direction: d = H-1 g
computing step by searching for minimum of F(x) along d
compute gradient g at the new point
update inverse Hessian matrix, H-1 at the new point using an
approximate formula (Davidon, Powell, Fletcher)

better updating inverse H-1 than Hessian H
matrix is positive defined but numerical errors can make it not

repeat iteration until expected distance from minimum smaller
than required tolerance

10

Numerical Errors
What is effect of numerical errors in MINUIT ?

Minimization will be less efficient
⇒ more iterations ⇒ more CPU time
but minimizer will converge anyway

Minimization could fail, not being able to converge to a
minimum
Error in inverting the covariance matrix
In same case could converge to a different minimum
(e.g. a local one)

⇒ obtain a wrong result
11

Numerical Errors (2)
What are the cause of numerical errors ?

error in F(x) when computing the sum of n elements
error : ~ nε double precision is needed
can be problematic when computing in parallel
where sum is done in random order

can be solved using compensated summation
(Kahan)

F(x) can have also errors from:
computation of log(P(x)) in likelihood fits
normalization of P(x) due to numerical integration

12

Derivative Errors

MINUIT provides algorithm for computation of derivatives
via finite differences
using analytical derivatives is often prohibitive in case of
very complex models

automatic differentiation is very convenient for users
minimization is very sensitive to derivative errors

when closer to the function minimum gradient
becomes closer to zero
difficulty in converging in case of error in derivatives

13

Compute derivatives by finite differences

Computation of Derivatives

@f

@xi
⇡ f(xi + �xi)� f(xi � �xi)

2�xi

✏TOT =
|f 000(µ)|

6
h2 + ✏R

|f |
h

Essential to find the right scale or step size
Algorithm in Minuit uses an iterative procedure starting
from initial user value

hOPT =
✓

3✏R|f |
|f 000(µ)|

◆1/3

14

Numerical Integration

Problematic to use Monte Carlo integration to
normalize the PDF when minimizing the likelihood

error will be too large and random

Use adaptive numerical integration:

numerical error under control if sum is not too large

important to define the right integration range
e.g. when integrating a very sharp peak

Z b

a
f(x) dx ⇡

nX

i=1

wif(xi)

15

Matrix Computation
Computing inverse of a matrix is very sensitive to
numerical errors

Linear system: better to solve directly without
computing inverse
inverse needed for statistical analysis: covariance
matrix (parameter errors), unfolding, etc..

ROOT provides various matrix decomposition algorithms
for solving linear systems and finding the inverse

LU, Bunch-Kaufmann, Choleski, QR and SVD
error depends on condition number

k = ‖A ‖‖A-1‖
accuracy in solution ~ ε10k ~ 10-(16-k) for double precision

16

Example: Matrix Inversion
ROOT provides also fast inversion using Cramer
(TMatrix::InvertFast, SMatrix::InvertFast)

factor of 2 faster
suffer from numerical problems:

Example if A is 5x5 matrix one can get results as
AA-1 using fast Cramer inv.: error ~ 10-6

AA-1 with LU decomposition: error ~ 10-12

A =

✓
a b
c d

◆
based on det(A) = a ⇤ d� b ⇤ c

17

Summary

Importance of being aware of floating point traps in
performing numerical calculations

must not ignore floating point errors, although
observables measured at a much less precision

learn how numerical errors arise in most used
algorithms of data analysis

hope you will learn later how you can control
better these numerical errors

18

References

Wikipedia:
http://en.wikipedia.org/wiki/Floating_point

W. Kahan home page (with code examples)
http://www.cs.berkeley.edu/~wkahan/

N. J .Higham, Accuracy and Stability of Numerical Algorithms, SIAM
book, 2002
D. Goldberg, What Every Computer Scientist Should Know About
Floating-Point Arithmetic, ACM Computing Surveys 23, 5–48
D. Monniaux, The pitfall of verifying floating-point computations, ACM
Transactions on Programming Languages and Systems 30, 3 (2008) 12

19

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Floating_point
http://www.cs.berkeley.edu/~wkahan/
http://www.cs.berkeley.edu/~wkahan/

