
Floating Point Issues
in Data Analysis 

Lorenzo Moneta
CERN, PH-SFT

CERN/Intel workshop on Numerical Computing
February 7-8, 2012, CERN 1



Introduction
Floating Points 

fl(x) = x(1 + ε)
fl(x op y ) = (x op y) (1+ ε)  op = +,-,/,*  

single precision (32 bits),        u = 2-24 ≈ 6 ×10-8

double precision (64 bits):       u = 2-53 ≈ 1.1×10-16

relative error on result can be much larger
e.g.  fl(x-y) ≲ ε (|x|+|y|)/(|x-y|)     large for x ~ y 

fl( fl(x+y) + z )  ≠ fl( fl(x+z) + y)
32 bits vs 64 bits architectures

in 32 bits arch. operations done in double extended 
precision (t = 64), but stored as double in memory 
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Scaling
Importance to try to keep numbers around 1

Better to apply a linear transformation to the  data to 
have location and scale around 1

Non-sense using for observables units not close to 1 
(e.g use GeV instead of eV)

scale is defined by physical quantities (e.g. detector 
resolution)

use reasonable ranges
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Computing the sample variance is numerically difficult 
when μ << σ

Normally s2 and μ computed with one pass

numerical error when making difference of two 
positive numbers

A possible solution is to accumulate

Standard Deviation
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Example: Histograms
Histogram classes in single (TH1F) and double precision (TH1D)

axis always represented in double precision
choose correct bin boundaries 

single precision often enough 
save memory for large multi-dim histograms

double precision often not really needed (apart from cases with 
large  number of counts/bin)

provided also a TH1I (integer bin content)
if memory is not an issue, better always to use double precision
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Matrix and Vector Libraries
ROOT Mathematical Libraries provide: 

Template vector and matrix classes (in any dimension)
e.g. SMatrix< N, double>

Template classes for geometry and physics vectors
e.g. LorentzVector<PxPyPzE4D<double> >

classes can be used in single and double precision
Often no need double precision for measured quantities 
(observables) 
Simple mathematical computations could be done in single 
precision 

faster if using vectorization
Need double precision for transformation (e.g. rotation) or when 
performing large summation 
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Math and Stat Functions
All Math functions provided in double precision 

maybe (for some dedicated cases) a faster single-precision 
function could be needed

Example: statistical functions:
provide cumulative and its complement: 

Same for the inverse of cumulative (quantile)
normal_quantile(p, !) and normal_quantile_c(p, !)

significance n! = normal_quantile_c(p, !)
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Function Minimization
One of the most used algorithm in data analysis 

Function minimization is needed in statistical analysis

fitting data points (non-linear least square fits)

maximum likelihood fits  (parameter estimation) and 
for error analysis (interval estimation)

likelihood 

minimum of 
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Example: Higgs Searches
Higgs search results require numerous minimization of 
complex likelihood functions (> 200 parameters)
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MINUIT Algorithm
Migrad based on Variable Metric algorithm (Davidon) 
Iterate to find function minimum:  

start from initial estimate of gradient g0 and Hessian matrix, H0

find Newton direction:  d = H-1 g
computing step by searching for minimum of F(x) along d
compute gradient g at the new point
update inverse Hessian matrix, H-1 at the new point using an 
approximate formula (Davidon, Powell, Fletcher) 

better updating inverse H-1  than Hessian H
matrix is positive defined but numerical errors can make it not

repeat iteration until expected  distance from minimum smaller 
than required tolerance

10



Numerical Errors
What is effect of numerical errors in MINUIT ? 

Minimization will be less efficient
⇒ more iterations ⇒ more CPU time
but minimizer will converge anyway

Minimization could fail, not being able to converge to a 
minimum
Error in inverting the covariance matrix
In same case could converge to a different minimum 
(e.g. a local one)

⇒ obtain a wrong result
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Numerical Errors (2)
What are the cause of numerical errors ? 

error in F(x) when computing the sum of n elements
error :   ~ nε     double precision is needed 
can be problematic when computing in parallel 
where sum is done in random order

can be solved using compensated summation 
(Kahan) 

F(x) can have also errors from: 
computation of log( P(x) ) in likelihood fits
normalization of P(x) due to  numerical integration
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Derivative Errors

MINUIT provides algorithm for computation of derivatives 
via finite differences
using analytical derivatives is often prohibitive in case of 
very complex models

automatic differentiation is very convenient for users
minimization  is very sensitive to derivative errors 

when closer to the function minimum gradient 
becomes closer to zero
difficulty in converging in case of error in derivatives 
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Compute derivatives by finite differences

Computation of Derivatives

@f

@xi
⇡ f(xi + �xi)� f(xi � �xi)

2�xi

✏TOT =
|f 000(µ)|

6
h2 + ✏R

|f |
h

Essential to find the right scale or step size
Algorithm in Minuit uses an iterative procedure starting 
from initial user value
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Numerical Integration

Problematic to use Monte Carlo integration to 
normalize the PDF when minimizing the likelihood

error will be too large and random

Use adaptive numerical integration:

numerical error under control if sum is not too large

important to define the right integration range
e.g. when integrating a very sharp peak 
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Matrix Computation
Computing inverse of a matrix is very sensitive to 
numerical errors

Linear system: better to solve directly without 
computing inverse
inverse needed for statistical analysis: covariance 
matrix (parameter errors), unfolding, etc..

ROOT provides various matrix decomposition algorithms 
for solving linear systems and finding the inverse

LU, Bunch-Kaufmann, Choleski, QR and SVD
error depends on condition number

k = ‖A ‖‖A-1‖
accuracy in solution ~ ε10k  ~ 10-(16-k) for double precision
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Example: Matrix Inversion
ROOT provides also fast inversion using Cramer 
(TMatrix::InvertFast, SMatrix::InvertFast)

factor of 2 faster 
suffer from numerical problems:

Example  if A is 5x5 matrix one can get results as
AA-1 using fast Cramer inv.:      error ~ 10-6

AA-1 with  LU decomposition:  error ~ 10-12

A =

✓
a b
c d

◆
based on det(A) = a ⇤ d� b ⇤ c
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Summary

Importance of being aware of floating point traps in 
performing numerical calculations

must not ignore floating point errors, although 
observables measured  at a much less precision 

learn how numerical errors arise in most used 
algorithms of data analysis

hope you will learn later how you can control 
better these numerical errors 
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