Workshop on Numerical Computing

Floating-Point Arithmetic

CERN

openlab

Jeff Arnold, Intel Corporation

7 February 2012

Agenda

- Part I Fundamentals
 - Motivation
 - Some properties of floating-point numbers
 - Standards
 - A trip through the floating-point numbers
- Part II Techniques
 - Error-free transformations
 - Summation
 - Dot product
 - Polynomial evaluation

Motivation

- Why is floating-point arithmetic important?
- Reasoning about floating-point arithmetic
- Why do standards matter?
- Techniques which improve floating-point
 - Accuracy
 - Versatility
 - Performance

Why is Floating-Point Arithmetic Important?

- It is ubiquitous in scientific computing
 - Most research in HEP can't be done without it
- Need to implement algorithms which
 - Get the best answers
 - Get the best answers quickly
 - Get the best answers all the time
- A rigorous approach to floating-point is seldom taught in programming courses
 - Too many think floating-point arithmetic is
 - Approximate in a random ill-defined sense
 - Mysterious
 - Often wrong

Reasoning about Floating-Point Arithmetic

It's important because

- One can prove algorithms are correct
 - One can even prove they are portable
- One can estimate the round-off and approximate errors in calculations
- This increases confidence in the results

Some Empirical Properties of Floating-Point Numbers

- They aren't real
 - There are only a finite number of them
 - They do not form a field
- Even if a and b are floating-point numbers, $a \oplus b$ may not be
 - Similarly for \ominus , \otimes and \oslash
- Operations may not associate:
 - $(a \oplus b) \oplus c \neq a \oplus (b \oplus c)$
 - Similarly for \ominus and \otimes
- Operations may not distribute:
 - $a \otimes (b \oplus c) \neq (a \otimes b) \oplus (a \otimes c)$

Standards

There have been three major standards affecting floating-point arithmetic:

- IEEE 754-1985 Standard for Binary Floating-Point Arithmetic
- IEEE 854-1987 Standard for Radix Independent Floating-Point Arithmetic
- IEEE 754-2008 Standard for Floating-Point Arithmetic
 - We will concentrate on this one since it is current

Standardized/specified

- Formats
- Rounding modes
- Operations
- Special values
- Exceptions

- Only described binary floating-point arithmetic
- Two basic formats specified:
 - single precision (mandatory)
 - double precision
- An extended format was associated with each basic format
 - Double extended: IA32 "80-bit" format

IEEE 854-1987

- "Radix-independent"
 - But essentially only radix 2 or 10 considered
- Constraints on relationships among
 - Number of bits of precision
 - Mininum and maximum exponent
- Constraints between various formats

The Need for a Revision

- Standardize common practices
 - Quadruple precision
- Standardize effects of new/improved algorithms
 - Radix conversion
 - Correctly rounded elementary functions
- Remove ambiguities
- Improve portability

- Merged 754-1985 and 854-1987
 - But tried not to invalidate hardware which conformed to 754-1985
- Standardized
 - Quadruple precision
 - Fused multiply-add (FMA)
- Resolve ambiguities
 - Aids portability between implementations

Formats

- Interchange
 - Used to exchange floating-point data between implementations/platforms
 - Fully specified as bit strings
 - Does not address endianness
- Extended and Extendable formats
 - Encodings not specified
 - May match interchange formats
- Arithmetic formats
 - A format which represents operands and results for all operations required by the standard

Format of a Binary Floating-point Number

IEEE Name	Format	Storage Size	w	р	e _{min}	e _{max}
Binary32	Single	32	8	24	-126	+127
Binary64	Double	64	11	53	-1022	+1023
Binary128	Quad	128	15	113	-16382	+16383

Formats

- Basic formats:
 - Binary with lengths of 32, 64 and 128 bits
 - Decimal with lengths of 64 and 128 bits
- Other formats:
 - Binary with a length of 16 bits
 - p = 11
 - $-e_{min} = -14, e_{max} = +15$
 - Decimal with a length of 32 bits

Larger Formats

- Parameterized based on size k:
 - $k \ge 128$ and must be a multiple of 32
 - $p = k roundnearest(4 \times log_2(k)) + 13$

•
$$w = k - p$$

•
$$e_{max} = 2^{w-1} - 1$$

- For example, on all conforming platforms, Binary1024 will have:
 - *k* = 1024
 - p = 1024 40 + 13 = 997
 - *w* = 27
 - $e_{max} = +67108863$

- Radix
 - Either 2 or 10
- Representation specified by
 - Radix
 - Sign
 - Exponent
 - Biased exponent
 - e_{min} must be equal to $1 e_{max}$
 - Significand
 - "hidden bit" for normal values

We're not going to consider every possible situation

For this workshop, we will limit our discussion to

- Radix 2
- Binary32, Binary64 and Binary128 formats
 - Covers SSE and AVX
 - I.e., modern processors
 - Not considering "double extended" format

 "IA32 x87" format
 - Not considering decimal formats
- Round to nearest even

Value of a Floating-Point Number

The value of a floating-point number is determined by 4 quantities:

- sign $s \in \{0,1\}$
- radix β
 - Sometimes called the "base"
- precision p
 - the digits are x_i , $0 \le i < p$, where $0 \le x_i < \beta$
- exponent e is an integer
 - $e_{min} \leq e \leq e_{max}$

Value of a Floating-Point Number

The value of a floating-point number can be expressed as

Value of a Floating-Point Number

The value can also be written $x = (-)^{s} \beta^{e-p+1} \sum_{i=0}^{p-1} x_{i} \beta^{p-i-1}$

where the integral significand is $M = \sum_{i=0}^{p-1} x_i \beta^{p-i-1}$

with

 $0 \le M < \beta^p$

- Addition, subtraction
- Multiplication
- Division
- Remainder
- Square root
- All with correct rounding
 - correct rounding: return the correct finite result using the current rounding mode

Operations

- Conversion to/from integer
 - Conversion to integer must be correctly rounded
- Conversion to/from decimal strings
 - Conversions must be monotonic
 - Under some conditions, binary→decimal→binary conversions must be exact

Special Values

- Zero
 - signed
- Infinity
 - signed
- NaN
 - Quiet NaN
 - Signaling NaN
 - NaNs do not have a sign: they aren't a number
 The sign bit is ignored
 - NaNs can "carry" information

Exceptions Specified by IEEE 754-2008

- Underflow
 - Absolute value of a non-zero result is less than $\beta^{e_{min}}$ (i.e., it is subnormal)
 - Some ambiguity: before or after rounding?
 - Overflow
 - Absolute value of a result greater than the largest finite value $\Omega = 2^{e_{max}} \times (2 2^{1-p})$
 - Result is $\pm \infty$
 - Division by zero
 - x/y where x is finite and non-zero and y = 0
 - Inexact
 - Result, after rounding, is not exact
 - Invalid

Exceptions Specified by IEEE 754-2008

- Invalid
 - An operand is a sNaN
 - \sqrt{x} where x < 0
 - However $\sqrt{-0} = -0$
 - $(-\infty) + (+\infty), (+\infty) + (-\infty)$
 - $(-\infty) (-\infty), (+\infty) (+\infty)$
 - $(\pm 0) \times (\pm \infty)$
 - $(\pm 0)/(\pm 0)$ or $(\pm \infty)/(\pm \infty)$
 - some floating-point →integer or decimal conversions

Rounding Modes in IEEE 754-2008

- round to nearest
 - round to nearest even
 - in the case of ties, select result with even significand
 - required for binary and decimal
 - the default rounding mode for binary
 - round to nearest away
 - required only for decimal
- round toward +∞
- round toward -∞
- round toward 0

Transcendental and Algebraic Functions

The standard **recommends** the following functions be correctly rounded:

- e^x , $e^x 1$, 2^x , $2^x 1$, 10^x , $10^x 1$
- $log_{\alpha}(\Phi)$ for $\alpha = e, 2, 10$ and $\Phi = x, 1 + x$
- $\sqrt{x^2 + y^2}$, $1/\sqrt{x}$, $(1 + x)^n$, x^n , $x^{1/n}$
- sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x) and the inverse functions
- $\sin(\pi x)$, $\cos(\pi x)$
- And more...

Workshop on Numerical Computing — Floating-Point Arithmetic

Transcendental Functions

Why this may be difficult to do...

Consider 2^{1.e4596526bf94dP-31}

- You need to know the result to 115 bits to determine the correct rounding.
- "The Table-Makers Dilemma"
 - Rounding ≈ f(x) gives same result as rounding f(x)
- See publications from ENS group

Workshop on Numerical Computing — Floating-Point Arithmetic

Table-Makers Dilemma

"No general way exists to predict how many extra digits will have to be carried to compute a transcendental expression and round it correctly to some preassigned number of digits."

W. Kahan

Convenient Properties

Exact operations

- If $\frac{y}{2} \le x \le 2y$ and subnormals are available, then x - y is exact
 - Sterbenz's lemma
- But what about catastrophic cancellation?
 - Subtracting nearly equal numbers loses accuracy
- The subtraction itself does not introduce any error
 - it may amplify a pre-existing error

Convenient Properties

Exact operations

- Multiplication/division by 2ⁿ is exact
 - In the absence of under/overflow
- Multiplication of numbers with significands having sufficient low-order 0 digits
 - Precise splitting and Dekker's multiplication

Walking Through Floating-point Numbers

- 0x0000000000000000000

+zero

smallest subnormal

- 0x00100000000000000000

largest subnormal

smallest normal

- 0x001fffffffffff
- 0x002000000000000000000

2 X smallest normal

Workshop on Numerical Computing — Floating-Point Arithmetic

Walking Through Floating-point Numbers

• 0x00200000000000000000

- **0x7fefffffffff** largest normal

- 0x7ffffffffffff
 NaN

2 X smallest

normal

+infinity

Walking Through Floating-point Numbers

- ox800000000000000000
- 0x8000000000000000
- 0x800ffffffffff
- 0x80100000000000000

- **0xfff**000000000000000
- **Oxfff00000000000**

"smallest" negative subnormal

"largest" negative subnormal "smallest" negative normal

• **Oxffffffffffff** — NaN

End of Part I

Time for a break...

Part II -- Techniques

- Error-Free Transformations
- Summation
- Dot Products
- Polynomial Evaluation
- Data Interchange

Notation

- Floating-point operations are written:
 - \oplus addition
 - \ominus subtraction
 - \otimes multiplication
 - Ø division
- $a \oplus b$ represents the addition of a and b
 - *a* and *b* are floating-point numbers
 - the result is a floating-point number
 - in general, $a + b \neq a \oplus b$

Error-Free Transformations

An error-free transformation (EFT) is an algorithm which determines the rounding error associated with a floating-point operation.

Addition/subtraction

 $a + b = (a \oplus b) + t$

Multiplication

 $ab = (a \otimes b) + t$

There are others

Error-Free Transformations

- Under most conditions, the rounding error is itself a floating-point number
 - Thus a + b = s + t where all are floating-point numbers
 - This is still a powerful analytical tool even when t is not a floating-point number
- An EFT can be implemented using only floating-point computations in the working precision
- Rounding error is often called the approximation error

EFT for Addition: FastTwoSum

Compute a + b = s + t where

 $\bullet |a| \ge |b|$

• $s = a \oplus b$

```
void
```


EFT for Addition: TwoSum

Compute a + b = s + t where

• $s = a \oplus b$

EFTs for Addition

- A realistic implementation of FastTwoSum requires 3 flops and a branch
- TwoSum takes 6 flops but requires no branches
- TwoSum is usually faster on modern processors
- Recall that this discussion is restricted to radix 2 and round to nearest even

Precise Splitting Algorithm

- Known as Veltkamp's algorithm
- Calculates x_h and x_l such that $x = x_h + x_l$ exactly
- For $\delta < p$, where δ is a parameter,
 - The significand of x_h fits in $p \delta$ digits
 - The significand of x_l fits in δ digits
- No information is lost in the transformation

Precise Splitting

Code fragment

Precise Multiplication

- Dekker's algorithm
- Computes *s* and t such that $a \times b = s + t$ where $s = a \otimes b$

Precise Multiplication Algorithm

```
#define SHIFT POW 27 /* [p/2] for Binary64 */
void
Mult( const double a, const double b,
      double* s, double* t ) {
    double a_high, a_low, b_high, b_low;
    Split( a, SHIFT POW, & high, & low );
    Split( b, SHIFT POW, &b high, &b low );
    *s = x * y;
    *t = -*s + a high * b high ;
    *t += a_high * b_low + a_low * b_high;
    *t += a low * b low;
    return;
}
```


Summation Techniques

- Traditional
- Sorting and Insertion
- Compensated
- Distillation
- Multiple accumulators

Reference: Higham

Summation Techniques

Condition number

$$C_{sum} = \frac{|\sum a_i|}{\sum |a_i|}$$

- If C_{sum} is "not too large," the problem is not ill-conditioned and traditional methods may suffice
- But if C_{sum} is "too large," we want results appropriate to higher precision without actually using a higher precision
- But if higher precision is available, use it!

Traditional Summation

- $s = \sum_{i=0}^{n} x_i$
- Code fragment

```
double
Sum( const double* x, const int n ) {
    int i;
    for ( i = 0; i < n; i++ ) {
        Sum += x[ i ];
    }
    return Sum;
}</pre>
```


Sorting and Insertion

- Reorder the operands
 - Increasing magnitude
 - Decreasing magnitude
- Insertion
 - First sort by magnitude
 - Remove x_1 and x_2 and compute their sum
 - Insert that sum on the list keeping it sorted
 - Repeat until only 1 element is left on the list
- Many variations
 - If lots of cancellation, sorting by decreasing magnitude often better
 - Sterbenz's lemma

Compensated Summation

- Based on FastTwoSum and TwoSum techniques
- Knowledge of the exact rounding error in a floating-point addition is used to correct the summation

Compensated Summation

Code fragment

double Kahan(const double* x, const int n) { double sum = x[0];double c = 0.0;double y; int i; for (i = 1; i < n; i++) {</pre> y = x[i] + c;FastTwoSum(sum, y, &sum, &c); } return sum; }

Compensated Summation

- Many variations known
- Consult the literature:
 - Kahan
 - Knuth
 - Priest
 - Pichat and Neumaier
 - Rump, Ogita and Oishi
 - Shewchuk
 - Arénaire Project (ENS)

Other Summation Techniques

- Distillation
 - Separate accumulators based on exponents of operands
 - Additions are always exact until the accumulators are finally added
- Long accumulators
 - Emulate greater precision
 - E.g., double-double

Choice of Summation Technique

- Performance
- Error bound
 - independent of n?
- Condition number
 - Is it known?
 - Difficult to determine?
 - Some algorithms allow it to be determined simultaneously with the sum: can evaluate the suitability of the result
- No one technique fits all situations all the time

Dot Product

- Use of EFTs
- Recast to summation
- Compensated dot product

Dot Product

Condition number:

$$\frac{2\sum_{i=1}^{n}|a_{i}\cdot b_{i}|}{\left|\sum_{i=1}^{n}a_{i}\cdot b_{i}\right|}$$

If C is not too large, a traditional algorithm can be used

Dot Product

- The dot product of 2 vectors of dimension n can be reduced to computing the sum of 2n floating-point numbers
 - Split and form products
- Algorithms can be constructed such that the result computed in precision p is as accurate as though the dot product was computed in precision 2p and then rounding back
- Consult the work of Ogita, Rump and Oishi

- Horner's method
- Use of EFTs
- Compensated

Horner's method

$$p(x) = \sum_{i=0}^{n} a_i x^i$$

where x and all a_i are all floating-point numbers

Code fragment

Compensated Horner's method:

- Let $p_0 = \text{Horner}(a,n,x)$
- Determine $\pi(x)$ and $\sigma(x)$ where
 - $\pi(x)$ and $\sigma(x)$ are polynomials of degree n-1 with coefficients π_i and σ_i
 - such that

$$p(x) = p_0 + \pi(x) + \sigma(x)$$

Compensated Horner's method:

- $p(x) = p_0 + \pi(x) + \sigma(x)$
- Error analysis shows that under certain conditions, p(x) is as accurate as evaluating p_0 in twice the working precision
- Even if those conditions are not met, one can apply the method recursively to π(x) and σ(x)

Data Interchange

Moving floating-point data between platforms without loss of information?

- Exchange binary data
- Use of %a and %A
 - Encodes the internal bit patterns via hex digits
- Formatted decimal strings
 - Requires sufficient decimal digits to guarantee "round-trip" reproducibility
 - Depends on accuracy of run-time binary↔decimal conversion routines on all platforms

Bibliography

- D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, 23(1):5–47, March 1991.
- J.-M. Muller et al, *Handbook of Floating-Point Arithmetic,* Birkäuser, Boston, 2010.
- N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, 2002.

Bibliography

- Publications from CNRS/ENS Lyon/INRIA/Arénaire project (J.-M. Muller et al)

