
Workshop on

Numerical Computing

Floating-Point

Arithmetic

Jeff Arnold, Intel Corporation

7 February 2012

Agenda

 Part I – Fundamentals
• Motivation

• Some properties of floating-point numbers

• Standards

• A trip through the floating-point numbers

 Part II – Techniques
• Error-free transformations

• Summation

• Dot product

• Polynomial evaluation

Workshop on Numerical Computing — Floating-Point Arithmetic 2

Motivation

 Why is floating-point arithmetic important?

 Reasoning about floating-point arithmetic

 Why do standards matter?

 Techniques which improve floating-point
• Accuracy

• Versatility

• Performance

Workshop on Numerical Computing — Floating-Point Arithmetic 3

Why is Floating-Point Arithmetic

Important?

 It is ubiquitous in scientific computing
• Most research in HEP can’t be done without it

 Need to implement algorithms which
• Get the best answers

• Get the best answers quickly

• Get the best answers all the time

 A rigorous approach to floating-point is

seldom taught in programming courses
• Too many think floating-point arithmetic is

– Approximate in a random ill-defined sense

– Mysterious

– Often wrong

 Workshop on Numerical Computing — Floating-Point Arithmetic 4

Reasoning about Floating-Point

Arithmetic

It’s important because

 One can prove algorithms are correct
• One can even prove they are portable

 One can estimate the round-off and

approximate errors in calculations

 This increases confidence in the results

Workshop on Numerical Computing — Floating-Point Arithmetic 5

Some Empirical Properties of

Floating-Point Numbers

 They aren’t real
• There are only a finite number of them

• They do not form a field

 Even if 𝑎 and 𝑏 are floating-point numbers,

𝑎⨁𝑏 may not be
• Similarly for ⊖, ⊗ and ⊘

 Operations may not associate:
• (𝑎⨁𝑏)⨁𝑐 ≠ 𝑎⨁(𝑏⨁𝑐)
• Similarly for ⊖ and ⊗

 Operations may not distribute:
• 𝑎⨂(𝑏⨁𝑐) ≠ (𝑎 ⊗ 𝑏)⨁(𝑎⨂𝑐)

 Workshop on Numerical Computing — Floating-Point Arithmetic 6

Standards

There have been three major standards

affecting floating-point arithmetic:

 IEEE 754-1985 Standard for Binary Floating-

Point Arithmetic

 IEEE 854-1987 Standard for Radix

Independent Floating-Point Arithmetic

 IEEE 754-2008 Standard for Floating-Point

Arithmetic
• We will concentrate on this one since it is current

Workshop on Numerical Computing — Floating-Point Arithmetic 7

IEEE 754-1985

Standardized/specified

 Formats

 Rounding modes

 Operations

 Special values

 Exceptions

Workshop on Numerical Computing — Floating-Point Arithmetic 8

IEEE 754-1985

 Only described binary floating-point

arithmetic

 Two basic formats specified:
• single precision (mandatory)

• double precision

 An extended format was associated with

each basic format
• Double extended: IA32 “80-bit” format

Workshop on Numerical Computing — Floating-Point Arithmetic 9

IEEE 854-1987

 “Radix-independent”
• But essentially only radix 2 or 10 considered

 Constraints on relationships among
• Number of bits of precision

• Mininum and maximum exponent

 Constraints between various formats

Workshop on Numerical Computing — Floating-Point Arithmetic 10

The Need for a Revision

 Standardize common practices
• Quadruple precision

 Standardize effects of new/improved

algorithms
• Radix conversion

• Correctly rounded elementary functions

 Remove ambiguities

 Improve portability

Workshop on Numerical Computing — Floating-Point Arithmetic 11

IEEE 754-2008

 Merged 754-1985 and 854-1987
• But tried not to invalidate hardware which

conformed to 754-1985

 Standardized
• Quadruple precision

• Fused multiply-add (FMA)

 Resolve ambiguities
• Aids portability between implementations

Workshop on Numerical Computing — Floating-Point Arithmetic 12

IEEE 754-2008

Formats

 Interchange
• Used to exchange floating-point data between

implementations/platforms
• Fully specified as bit strings

– Does not address endianness

 Extended and Extendable formats
• Encodings not specified
• May match interchange formats

 Arithmetic formats
• A format which represents operands and results

for all operations required by the standard

Workshop on Numerical Computing — Floating-Point Arithmetic 13

Format of a Binary Floating-point

Number

s expo significand

1 w p-1

IEEE

Name
Format

Storage

Size
w p 𝒆𝒎𝒊𝒏 𝒆𝒎𝒂𝒙

Binary32 Single 32 8 24 -126 +127

Binary64 Double 64 11 53 -1022 +1023

Binary128 Quad 128 15 113 -16382 +16383

Workshop on Numerical Computing — Floating-Point Arithmetic 14

IEEE 754-2008

Formats

 Basic formats:
• Binary with lengths of 32, 64 and 128 bits

• Decimal with lengths of 64 and 128 bits

 Other formats:
• Binary with a length of 16 bits

– 𝑝 = 11

– 𝑒𝑚𝑖𝑛 = −14, 𝑒𝑚𝑎𝑥 = +15

• Decimal with a length of 32 bits

Workshop on Numerical Computing — Floating-Point Arithmetic 15

IEEE 754-2008

Larger Formats

 Parameterized based on size 𝑘:
• 𝑘 ≥ 128 and must be a multiple of 32

• 𝑝 = 𝑘 − 𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡(4 × 𝑙𝑜𝑔2 𝑘) + 13
• 𝑤 = 𝑘 − 𝑝
• 𝑒𝑚𝑎𝑥 = 2

𝑤−1 − 1

 For example, on all conforming platforms,
Binary1024 will have:
• 𝑘 = 1024
• 𝑝 = 1024 − 40 + 13 = 997
• 𝑤 = 27
• 𝑒𝑚𝑎𝑥 = +67108863

Workshop on Numerical Computing — Floating-Point Arithmetic 16

IEEE 754-2008

 Radix
• Either 2 or 10

 Representation specified by
• Radix

• Sign

• Exponent

– Biased exponent

– 𝑒𝑚𝑖𝑛 must be equal to 1 − 𝑒𝑚𝑎𝑥

• Significand

– “hidden bit” for normal values

Workshop on Numerical Computing — Floating-Point Arithmetic 17

We’re not going to consider

every possible situation

For this workshop, we will limit our discussion

to

 Radix 2

 Binary32, Binary64 and Binary128 formats
• Covers SSE and AVX

– I.e., modern processors

• Not considering “double extended” format

– “IA32 x87” format

• Not considering decimal formats

 Round to nearest even

Workshop on Numerical Computing — Floating-Point Arithmetic 18

Value of a Floating-Point Number

The value of a floating-point number is

determined by 4 quantities:

 sign 𝑠 ∈ 0,1

 radix β
• Sometimes called the “base”

 precision 𝑝
• the digits are 𝑥𝑖, 0 ≤ 𝑖 < 𝑝, where 0 ≤ 𝑥𝑖 < β

 exponent 𝑒 is an integer
• 𝑒𝑚𝑖𝑛 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥

Workshop on Numerical Computing — Floating-Point Arithmetic 19

Value of a Floating-Point Number

The value of a floating-point number can be

expressed as

𝑥 = (−)𝑠𝛽𝑒 𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

where the significand is

𝑚 = 𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

with

0 ≤ 𝑚 < β

Workshop on Numerical Computing — Floating-Point Arithmetic 20

Value of a Floating-Point Number

The value can also be written

𝑥 = (−)𝑠𝛽𝑒−𝑝+1 𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

where the integral significand is

𝑀 = 𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

with
0 ≤ 𝑀 < β𝑝

Workshop on Numerical Computing — Floating-Point Arithmetic 21

Operations specified by IEEE 754-2008

 Addition, subtraction

 Multiplication

 Division

 Remainder

 Square root

 All with correct rounding
• correct rounding: return the correct finite result

using the current rounding mode

Workshop on Numerical Computing — Floating-Point Arithmetic 22

Operations

 Conversion to/from integer
• Conversion to integer must be correctly rounded

 Conversion to/from decimal strings
• Conversions must be monotonic

• Under some conditions, binary→decimal→binary

conversions must be exact

Workshop on Numerical Computing — Floating-Point Arithmetic 23

Special Values

 Zero
• signed

 Infinity
• signed

 NaN
• Quiet NaN

• Signaling NaN

• NaNs do not have a sign: they aren’t a number

– The sign bit is ignored

• NaNs can “carry” information

Workshop on Numerical Computing — Floating-Point Arithmetic 24

Exceptions Specified by IEEE 754-2008

 Underflow
• Absolute value of a non-zero result is less than β𝑒𝑚𝑖𝑛

(i.e., it is subnormal)
• Some ambiguity: before or after rounding?

 Overflow
• Absolute value of a result greater than the largest

finite value Ω = 2𝑒𝑚𝑎𝑥 × (2 − 21−𝑝)
• Result is ±∞

 Division by zero
• 𝑥/𝑦 where 𝑥 is finite and non-zero and 𝑦 = 0

 Inexact
• Result, after rounding, is not exact

 Invalid

Workshop on Numerical Computing — Floating-Point Arithmetic 25

Exceptions Specified by IEEE 754-2008

 Invalid
• An operand is a sNaN

• 𝑥 where 𝑥 < 0

• However −0 = −0

• −∞ + +∞ , +∞ + (−∞)
• −∞ − −∞ , +∞ − (+∞)
• (±0) × (±∞)
• (±0)/(±0) or (±∞)/(±∞)
• some floating-point →integer or decimal

conversions

Workshop on Numerical Computing — Floating-Point Arithmetic 26

Rounding Modes in IEEE 754-2008

 round to nearest
• round to nearest even

• in the case of ties, select result with even significand

• required for binary and decimal

• the default rounding mode for binary

• round to nearest away

• required only for decimal

 round toward +∞

 round toward −∞

 round toward 0

Workshop on Numerical Computing — Floating-Point Arithmetic 27

Transcendental and Algebraic Functions

The standard recommends the following

functions be correctly rounded:

 𝑒𝑥, 𝑒𝑥 − 1, 2𝑥, 2𝑥 − 1, 10𝑥, 10𝑥 − 1

 𝑙𝑜𝑔α(Φ) for α = 𝑒, 2, 10 and Φ = 𝑥, 1 + 𝑥

 𝑥2 + 𝑦2, 1/ 𝑥, (1 + 𝑥)𝑛, 𝑥𝑛, 𝑥1/𝑛

 sin(𝑥), cos(𝑥), tan(𝑥), sinh(𝑥), cosh(𝑥),
tanh(𝑥) and the inverse functions

 sin(π𝑥), cos(π𝑥)

 And more...
Workshop on Numerical Computing — Floating-Point Arithmetic 28

Transcendental Functions

Why this may be difficult to do...

Consider ⁡21.e4596526bf94dP−31

 The correct answer is

1.0052𝑓𝑐2𝑒𝑐2𝑏537𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓4…

 You need to know the result to 115 bits to

determine the correct rounding.

 “The Table-Makers Dilemma”
• Rounding ≈ 𝑓(𝑥) gives same result as rounding

𝑓(𝑥)

 See publications from ENS group
Workshop on Numerical Computing — Floating-Point Arithmetic 29

Table-Makers Dilemma

“No general way exists to predict how many

extra digits will have to be carried to compute a

transcendental expression and round it

correctly to some preassigned number of

digits.”

W. Kahan

Workshop on Numerical Computing — Floating-Point Arithmetic 30

Convenient Properties

Exact operations

 If
𝑦

2
≤ 𝑥 ≤ 2𝑦 and subnormals are available,

then 𝑥 − 𝑦 is exact
• Sterbenz’s lemma

 But what about catastrophic cancellation?
• Subtracting nearly equal numbers loses accuracy

 The subtraction itself does not introduce any

error
• it may amplify a pre-existing error

Workshop on Numerical Computing — Floating-Point Arithmetic 31

Convenient Properties

Exact operations

 Multiplication/division by 2𝑛 is exact
• In the absence of under/overflow

 Multiplication of numbers with significands

having sufficient low-order 0 digits
• Precise splitting and Dekker’s multiplication

Workshop on Numerical Computing — Floating-Point Arithmetic 32

Walking Through Floating-point

Numbers

 0x0000000000000000

 0x0000000000000001

 ...

 0x000fffffffffffff

 0x0010000000000000

 ...

 0x001fffffffffffff

 0x0020000000000000

Workshop on Numerical Computing — Floating-Point Arithmetic 33

+zero

smallest

subnormal

largest subnormal

smallest normal

2 X smallest

normal

Walking Through Floating-point

Numbers

 0x0020000000000000

 ...

 0x7fefffffffffffff

 0x7ff0000000000000

 0x7ff0000000000001

 ...

 0x7fffffffffffffff

 0x8000000000000000

Workshop on Numerical Computing — Floating-Point Arithmetic 34

2 X smallest

normal

+infinity

NaN

largest normal

NaN

-zero

Walking Through Floating-point

Numbers

 0x8000000000000000

 0x8000000000000001

 ...

 0x800fffffffffffff

 0x8010000000000000

 ...

 0xfff0000000000000

 0xfff0000000000001

 ...

 0xffffffffffffffff

Workshop on Numerical Computing — Floating-Point Arithmetic 35

NaN

“largest” negative

subnormal

NaN

-zero

“smallest” negative

subnormal

“smallest” negative

normal

-infinity

End of Part I

Time for a break...

Workshop on Numerical Computing — Floating-Point Arithmetic 36

Q & A

insert your footer here

Part II -- Techniques

 Error-Free Transformations

 Summation

 Dot Products

 Polynomial Evaluation

 Data Interchange

Workshop on Numerical Computing — Floating-Point Arithmetic 38

Notation

 Floating-point operations are written:
• ⊕ addition
• ⊖ subtraction
• ⊗ multiplication
• ⊘ division

 𝑎 ⊕ 𝑏 represents the addition of 𝑎 and 𝑏
• 𝑎 and 𝑏 are floating-point numbers

• the result is a floating-point number

• in general, 𝑎 + 𝑏 ≠ 𝑎 ⊕ 𝑏

 A generic floating-point operation on 𝑥 is

written ∘ (𝑥)

Workshop on Numerical Computing — Floating-Point Arithmetic 39

Error-Free Transformations

An error-free transformation (EFT) is an

algorithm which determines the rounding error

associated with a floating-point operation.

 Addition/subtraction

 𝑎 + 𝑏 = (𝑎⨁𝑏) + 𝑡

 Multiplication

 𝑎𝑏 = 𝑎⨂𝑏 + 𝑡

 There are others

Workshop on Numerical Computing — Floating-Point Arithmetic 40

Error-Free Transformations

 Under most conditions, the rounding error is

itself a floating-point number
• Thus 𝑎 + 𝑏 = 𝑠 + 𝑡 where all are floating-point

numbers

• This is still a powerful analytical tool even when 𝑡
is not a floating-point number

 An EFT can be implemented using only

floating-point computations in the working

precision

 Rounding error is often called the

approximation error

 Workshop on Numerical Computing — Floating-Point Arithmetic 41

EFT for Addition: FastTwoSum

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where

 𝑎 ≥ 𝑏

 𝑠 = 𝑎 ⊕ 𝑏

void
FastTwoSum(const double a, const double b,
 double* s, double* t) {
 // Requires that 𝒂 ≥ 𝒃
 // No unsafe optimizations!
 *s = a + b;
 *t = b - (*s - a);
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 42

EFT for Addition: TwoSum

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where

 𝑠 = 𝑎 ⊕ 𝑏

void
TwoSum(const double a, const double b,
 double* s, double* t) {
 // No unsafe optimizations!
 *s = a + b;
 double z = *s – b;
 *t = (a - z) + (b - (*s - z));
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 43

EFTs for Addition

 A realistic implementation of FastTwoSum

requires 3 flops and a branch

 TwoSum takes 6 flops but requires no

branches

 TwoSum is usually faster on modern

processors

 Recall that this discussion is restricted to

radix 2 and round to nearest even

Workshop on Numerical Computing — Floating-Point Arithmetic 44

Precise Splitting Algorithm

 Known as Veltkamp’s algorithm

 Calculates 𝑥ℎ and 𝑥𝑙 such that 𝑥 = 𝑥ℎ + 𝑥𝑙
exactly

 For δ < 𝑝, where δ is a parameter,
• The significand of 𝑥ℎ fits in p − δ digits

• The significand of 𝑥𝑙 fits in δ digits

 No information is lost in the transformation

Workshop on Numerical Computing — Floating-Point Arithmetic 45

Precise Splitting

 Code fragment

void
Split(const double x, const int delta,
 double* x_h, double* x_l) {
 unsigned long c = (1UL << delta) + 1;
 *x_h = (c * x) + (x - (c * x));
 *x_l = x - x_h;
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 46

Precise Multiplication

 Dekker’s algorithm

 Computes 𝑠 and t such that 𝑎 × 𝑏 = 𝑠 + 𝑡
where s= 𝑎⨂𝑏

Workshop on Numerical Computing — Floating-Point Arithmetic 47

Precise Multiplication Algorithm

#define SHIFT_POW 27 /* 𝑝/2 for Binary64 */
void
Mult(const double a, const double b,
 double* s, double* t) {
 double a_high, a_low, b_high, b_low;
 Split(a, SHIFT_POW, &a_high, &a_low);
 Split(b, SHIFT_POW, &b_high, &b_low);
 *s = x * y;
 *t = -*s + a_high * b_high ;
 *t += a_high * b_low + a_low * b_high;
 *t += a_low * b_low;
 return;
}

Workshop on Numerical Computing — Floating-Point Arithmetic 48

Summation Techniques

 Traditional

 Sorting and Insertion

 Compensated

 Distillation

 Multiple accumulators

 Reference: Higham

Workshop on Numerical Computing — Floating-Point Arithmetic 49

Summation Techniques

Condition number

𝐶𝑠𝑢𝑚 =
 𝑎𝑖
 𝑎𝑖

 If 𝐶𝑠𝑢𝑚 is “not too large,” the problem is not

ill-conditioned and traditional methods may

suffice

 But if 𝐶𝑠𝑢𝑚 is “too large,” we want results

appropriate to higher precision without

actually using a higher precision

 But if higher precision is available, use it!

Workshop on Numerical Computing — Floating-Point Arithmetic 50

Traditional Summation

 𝑠 = 𝑥𝑖
𝑛
𝑖=0

 Code fragment

Workshop on Numerical Computing — Floating-Point Arithmetic 51

double
Sum(const double* x, const int n) {
 int i;
 for (i = 0; i < n; i++) {
 Sum += x[i];
 }
 return Sum;
}

Sorting and Insertion

 Reorder the operands
• Increasing magnitude

• Decreasing magnitude

 Insertion
• First sort by magnitude

• Remove 𝑥1 and 𝑥2 and compute their sum

• Insert that sum on the list keeping it sorted

• Repeat until only 1 element is left on the list

 Many variations
• If lots of cancellation, sorting by decreasing

magnitude often better

• Sterbenz’s lemma

Workshop on Numerical Computing — Floating-Point Arithmetic 52

Compensated Summation

 Based on FastTwoSum and TwoSum

techniques

 Knowledge of the exact rounding error in a

floating-point addition is used to correct the

summation

Workshop on Numerical Computing — Floating-Point Arithmetic 53

Compensated Summation

 Code fragment

Workshop on Numerical Computing — Floating-Point Arithmetic 54

double
Kahan(const double* x, const int n) {
 double sum = x[0];
 double c = 0.0;
 double y;
 int i;
 for (i = 1; i < n; i++) {
 y = x[i] + c;
 FastTwoSum(sum, y, &sum, &c);
 }
 return sum;
}

Compensated Summation

 Many variations known

 Consult the literature:
• Kahan

• Knuth

• Priest

• Pichat and Neumaier

• Rump, Ogita and Oishi

• Shewchuk

• Arénaire Project (ENS)

Workshop on Numerical Computing — Floating-Point Arithmetic 55

Other Summation Techniques

 Distillation
• Separate accumulators based on exponents of

operands

• Additions are always exact until the accumulators

are finally added

 Long accumulators
• Emulate greater precision

• E.g., double-double

Workshop on Numerical Computing — Floating-Point Arithmetic 56

Choice of Summation Technique

 Performance

 Error bound
• independent of n?

 Condition number
• Is it known?

• Difficult to determine?

• Some algorithms allow it to be determined

simultaneously with the sum: can evaluate the

suitability of the result

 No one technique fits all situations all the

time

Workshop on Numerical Computing — Floating-Point Arithmetic 57

Dot Product

 Use of EFTs

 Recast to summation

 Compensated dot product

Workshop on Numerical Computing — Floating-Point Arithmetic 58

Dot Product

 Condition number:

𝐶𝑑𝑜𝑡⁡𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =
2 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 If 𝐶 is not too large, a traditional algorithm

can be used

Workshop on Numerical Computing — Floating-Point Arithmetic 59

Dot Product

 The dot product of 2 vectors of dimension 𝑛
can be reduced to computing the sum of 2𝑛
floating-point numbers
• Split and form products

 Algorithms can be constructed such that the

result computed in precision 𝑝 is as accurate

as though the dot product was computed in

precision 2𝑝 and then rounding back

 Consult the work of Ogita, Rump and Oishi

Workshop on Numerical Computing — Floating-Point Arithmetic 60

Polynomial Evaluation

 Horner’s method

 Use of EFTs

 Compensated

Workshop on Numerical Computing — Floating-Point Arithmetic 61

Polynomial Evaluation

Horner’s method

𝑝 𝑥 = 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

where 𝑥 and all 𝑎𝑖 are all floating-point

numbers

Workshop on Numerical Computing — Floating-Point Arithmetic 62

Polynomial Evaluation

 Code fragment

Workshop on Numerical Computing — Floating-Point Arithmetic 63

double
Horner(const double* a, const int n,
 double x) {
 int i;
 double p = 0.0;
 for (i = n; i >= 0; i--) {
 p = p * x + a[i];
 }
 return p;
}

Polynomial Evaluation

Compensated Horner’s method:

 Let 𝑝0 =⁡Horner(a,n,x)

 Determine π(𝑥) and σ(𝑥) where
• π(𝑥) and σ(𝑥) are polynomials of degree 𝑛 − 1

with coefficients π𝑖 and σ𝑖
• such that

𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥)

Workshop on Numerical Computing — Floating-Point Arithmetic 64

Polynomial Evaluation

Compensated Horner’s method:

 𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥)

 Error analysis shows that under certain

conditions, 𝑝(𝑥) is as accurate as evaluating

𝑝0 in twice the working precision

 Even if those conditions are not met, one

can apply the method recursively to π(𝑥)
and σ(𝑥)

Workshop on Numerical Computing — Floating-Point Arithmetic 65

Data Interchange

Moving floating-point data between platforms

without loss of information?

 Exchange binary data

 Use of %a and %A
• Encodes the internal bit patterns via hex digits

 Formatted decimal strings
• Requires sufficient decimal digits to guarantee

“round-trip” reproducibility

• Depends on accuracy of run-time

binary↔decimal conversion routines on all

platforms

Workshop on Numerical Computing — Floating-Point Arithmetic 66

Bibliography

 D. Goldberg, What every computer
scientist should know about floating-point
arithmetic, ACM Computing Surveys,

23(1):5–47, March 1991.

 J.-M. Muller et al, Handbook of Floating-
Point Arithmetic, Birkäuser, Boston, 2010.

 N. J. Higham, Accuracy and Stability of
Numerical Algorithms, SIAM, 2002.

Workshop on Numerical Computing — Floating-Point Arithmetic 67

Bibliography

 Publications from CNRS/ENS

Lyon/INRIA/Arénaire project (J.-M. Muller

et al)

 Publications from Institute for Reliable

Computing (Institut für Zuverlässiges

Rechnen), Technische Universität

Hamburg-Harburg (Siegfried Rump)

Workshop on Numerical Computing — Floating-Point Arithmetic 68

Q & A

insert your footer here

