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Motivation 

 Why is floating-point arithmetic important? 

 Reasoning about floating-point arithmetic 

 Why do standards matter? 

 Techniques which improve floating-point 
• Accuracy 

• Versatility 

• Performance 
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Why is Floating-Point Arithmetic 

Important? 

 It is ubiquitous in scientific computing 
• Most research in HEP can’t be done without it 

 Need to implement algorithms which 
• Get the best answers 

• Get the best answers quickly 

• Get the best answers all the time 

 A rigorous approach to floating-point is 

seldom taught in programming courses 
• Too many think floating-point arithmetic is 

– Approximate in a random ill-defined sense 

– Mysterious 

– Often wrong 
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Reasoning about Floating-Point 

Arithmetic 

It’s important because 

 One can prove algorithms are correct 
• One can even prove they are portable 

 One can estimate the round-off and 

approximate errors in calculations 

 This increases confidence in the results 
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Some Empirical Properties of 

Floating-Point Numbers 

 They aren’t real 
• There are only a finite number of them 

• They do not form a field 

 Even if 𝑎 and 𝑏 are floating-point numbers, 

𝑎⨁𝑏 may not be 
• Similarly for ⊖, ⊗ and ⊘ 

 Operations may not associate: 
• (𝑎⨁𝑏)⨁𝑐 ≠ 𝑎⨁(𝑏⨁𝑐) 
• Similarly for ⊖ and ⊗ 

 Operations may not distribute: 
• 𝑎⨂(𝑏⨁𝑐) ≠ (𝑎 ⊗ 𝑏)⨁(𝑎⨂𝑐) 
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Standards 

There have been three major standards 

affecting floating-point arithmetic: 

 IEEE 754-1985 Standard for Binary Floating-

Point Arithmetic 

 IEEE 854-1987 Standard for Radix 

Independent Floating-Point Arithmetic 

 IEEE 754-2008 Standard for Floating-Point 

Arithmetic 
• We will concentrate on this one since it is current 
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IEEE 754-1985 

Standardized/specified 

 Formats 

 Rounding modes 

 Operations 

 Special values 

 Exceptions 
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IEEE 754-1985 

 Only described binary floating-point 

arithmetic 

 Two basic formats specified: 
• single precision (mandatory) 

• double precision 

 An extended format was associated with 

each basic format 
• Double extended:  IA32 “80-bit” format 
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IEEE 854-1987 

 “Radix-independent” 
• But essentially only radix 2 or 10 considered 

 Constraints on relationships among 
• Number of bits of precision 

• Mininum and maximum exponent 

 Constraints between various formats 
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The Need for a Revision 

 Standardize common practices 
• Quadruple precision 

 Standardize effects of new/improved 

algorithms 
• Radix conversion 

• Correctly rounded elementary functions 

 Remove ambiguities 

 Improve portability 
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IEEE 754-2008 

 Merged 754-1985 and 854-1987 
• But tried not to invalidate hardware which 

conformed to 754-1985 

 Standardized 
• Quadruple precision 

• Fused multiply-add (FMA) 

 Resolve ambiguities 
• Aids portability between implementations 
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IEEE 754-2008 

Formats 

 Interchange 
• Used to exchange floating-point data between 

implementations/platforms 
• Fully specified as bit strings 

– Does not address endianness 

 Extended and Extendable formats 
• Encodings not specified 
• May match interchange formats 

 Arithmetic formats 
• A format which represents operands and results 

for all operations required by the standard 
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Format of a Binary Floating-point 

Number 

  

s expo significand 

1 w p-1 

IEEE 

Name 
Format 

Storage 

Size 
w p 𝒆𝒎𝒊𝒏 𝒆𝒎𝒂𝒙 

Binary32 Single 32 8 24 -126 +127 

Binary64 Double 64 11 53 -1022 +1023 

Binary128 Quad 128 15 113 -16382 +16383 
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IEEE 754-2008 

Formats 

 Basic formats: 
• Binary with lengths of 32, 64 and 128 bits 

• Decimal with lengths of 64 and 128 bits 

 Other formats: 
• Binary with a length of 16 bits 

– 𝑝 = 11 

– 𝑒𝑚𝑖𝑛 = −14, 𝑒𝑚𝑎𝑥 = +15 

• Decimal with a length of 32 bits 
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IEEE 754-2008 

Larger Formats 

 Parameterized based on size 𝑘: 
• 𝑘 ≥ 128 and must be a multiple of 32 

• 𝑝 = 𝑘 − 𝑟𝑜𝑢𝑛𝑑𝑛𝑒𝑎𝑟𝑒𝑠𝑡(4 × 𝑙𝑜𝑔2 𝑘 ) + 13 
• 𝑤 = 𝑘 − 𝑝 
• 𝑒𝑚𝑎𝑥 = 2

𝑤−1 − 1 

 For example, on all conforming platforms, 
Binary1024 will have: 
• 𝑘 = 1024 
• 𝑝 = 1024 − 40 + 13 = 997 
• 𝑤 = 27 
• 𝑒𝑚𝑎𝑥 = +67108863 
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IEEE 754-2008 

 Radix 
• Either 2 or 10 

 Representation specified by 
• Radix 

• Sign 

• Exponent 

– Biased exponent 

– 𝑒𝑚𝑖𝑛 must be equal to 1 − 𝑒𝑚𝑎𝑥 

• Significand 

– “hidden bit” for normal values 
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We’re not going to consider 

every possible situation 

For this workshop, we will limit our discussion 

to 

 Radix 2 

 Binary32, Binary64 and Binary128 formats 
• Covers SSE and AVX 

– I.e., modern processors 

• Not considering “double extended” format 

– “IA32 x87” format 

• Not considering decimal formats 

 Round to nearest even 
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Value of a Floating-Point Number 

The value of a floating-point number is 

determined by 4 quantities: 

 sign 𝑠 ∈ 0,1  

 radix β 
• Sometimes called the “base” 

 precision 𝑝 
• the digits are 𝑥𝑖, 0 ≤ 𝑖 < 𝑝, where 0 ≤ 𝑥𝑖 < β 

 exponent 𝑒 is an integer 
• 𝑒𝑚𝑖𝑛 ≤ 𝑒 ≤ 𝑒𝑚𝑎𝑥 
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Value of a Floating-Point Number 

The value of a floating-point number can be 

expressed as 

𝑥 = (−)𝑠𝛽𝑒 𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

 

where the significand is 

𝑚 =  𝑥𝑖β
−𝑖

𝑝−1

𝑖=0

 

with 

0 ≤ 𝑚 < β 
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Value of a Floating-Point Number 

The value can also be written 

𝑥 = (−)𝑠𝛽𝑒−𝑝+1 𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

 

where the integral significand is 

𝑀 =  𝑥𝑖β
𝑝−𝑖−1

𝑝−1

𝑖=0

 

with 
0 ≤ 𝑀 < β𝑝 
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Operations specified by IEEE 754-2008 

 Addition, subtraction 

 Multiplication 

 Division 

 Remainder 

 Square root 

 All with correct rounding 
• correct rounding:  return the correct finite result 

using the current rounding mode 
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Operations 

 Conversion to/from integer 
• Conversion to integer must be correctly rounded 

 Conversion to/from decimal strings 
• Conversions must be monotonic 

• Under some conditions, binary→decimal→binary 

conversions must be exact 
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Special Values 

 Zero 
• signed 

 Infinity 
• signed 

 NaN 
• Quiet NaN 

• Signaling NaN 

• NaNs do not have a sign:  they aren’t a number 

– The sign bit is ignored 

• NaNs can “carry” information 
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Exceptions Specified by IEEE 754-2008 

 Underflow 
• Absolute value of a non-zero result is less than β𝑒𝑚𝑖𝑛 

(i.e., it is subnormal) 
• Some ambiguity:  before or after rounding? 

 Overflow 
• Absolute value of a result greater than the largest 

finite value Ω = 2𝑒𝑚𝑎𝑥 × (2 − 21−𝑝) 
• Result is ±∞ 

 Division by zero 
• 𝑥/𝑦 where 𝑥 is finite and non-zero and 𝑦 = 0 

 Inexact 
• Result, after rounding, is not exact 

 Invalid 
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Exceptions Specified by IEEE 754-2008 

 Invalid 
• An operand is a sNaN 

• 𝑥 where 𝑥 < 0 

• However −0 = −0 

• −∞ + +∞ , +∞ + (−∞) 
• −∞ − −∞ , +∞ − (+∞) 
• (±0) × (±∞) 
• (±0)/(±0) or (±∞)/(±∞) 
•  some floating-point →integer or decimal 

conversions 
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Rounding Modes in IEEE 754-2008 

 round to nearest 
• round to nearest even 

• in the case of ties, select result with even significand 

• required for binary and decimal 

• the default rounding mode for binary 

• round to nearest away 

• required only for decimal 

 round toward +∞ 

 round toward −∞ 

 round toward 0 
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Transcendental and Algebraic Functions 

The standard recommends the following 

functions be correctly rounded: 

 𝑒𝑥, 𝑒𝑥 − 1, 2𝑥, 2𝑥 − 1, 10𝑥, 10𝑥 − 1 

 𝑙𝑜𝑔α(Φ) for α = 𝑒, 2, 10 and Φ = 𝑥, 1 + 𝑥 

 𝑥2 + 𝑦2, 1/ 𝑥, (1 + 𝑥)𝑛, 𝑥𝑛, 𝑥1/𝑛 

 sin(𝑥), cos(𝑥), tan(𝑥), sinh(𝑥), cosh(𝑥), 
tanh(𝑥) and the inverse functions 

 sin(π𝑥), cos(π𝑥) 

 And more... 
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Transcendental Functions 

Why this may be difficult to do... 

Consider ⁡21.e4596526bf94dP−31 

 The correct answer is 

1.0052𝑓𝑐2𝑒𝑐2𝑏537𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓4… 

 You need to know the result to 115 bits to 

determine the correct rounding. 

 “The Table-Makers Dilemma” 
• Rounding ≈ 𝑓(𝑥) gives same result as rounding 

𝑓(𝑥) 

 See publications from ENS group 
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Table-Makers Dilemma 

“No general way exists to predict how many 

extra digits will have to be carried to compute a 

transcendental expression and round it 

correctly to some preassigned number of 

digits.” 

W. Kahan 
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Convenient Properties 

Exact operations 

 If 
𝑦

2
≤ 𝑥 ≤ 2𝑦 and subnormals are available, 

then 𝑥 − 𝑦 is exact 
• Sterbenz’s lemma 

 But what about catastrophic cancellation? 
• Subtracting nearly equal numbers loses accuracy 

 The subtraction itself does not introduce any 

error 
• it may amplify a pre-existing error 
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Convenient Properties 

Exact operations 

 Multiplication/division by 2𝑛 is exact 
• In the absence of under/overflow 

 Multiplication of numbers with significands 

having sufficient low-order 0 digits 
• Precise splitting and Dekker’s multiplication 
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Walking Through Floating-point 

Numbers 

 0x0000000000000000 

 0x0000000000000001 

 ... 

 0x000fffffffffffff 

 0x0010000000000000 

 ... 

 0x001fffffffffffff 

 0x0020000000000000 
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+zero 

smallest 

subnormal 

largest subnormal 

smallest normal 

2 X smallest 

normal 



Walking Through Floating-point 

Numbers 

 0x0020000000000000 

 ... 

 0x7fefffffffffffff 

 0x7ff0000000000000 

 0x7ff0000000000001 

 ... 

 0x7fffffffffffffff 

 0x8000000000000000 
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2 X smallest 

normal 

+infinity 

NaN 

largest normal 

NaN 

-zero 



Walking Through Floating-point 

Numbers 

 0x8000000000000000 

 0x8000000000000001 

 ... 

 0x800fffffffffffff 

 0x8010000000000000 

 ... 

 0xfff0000000000000 

 0xfff0000000000001 

 ... 

 0xffffffffffffffff 
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NaN 

“largest” negative 

subnormal 

NaN 

-zero 

“smallest” negative 

subnormal 

“smallest” negative 

normal 

-infinity 



End of Part I 

Time for a break... 
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Q & A 

insert your footer here 



Part II -- Techniques 

 Error-Free Transformations 

 Summation 

 Dot Products 

 Polynomial Evaluation 

 Data Interchange 
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Notation 

 Floating-point operations are written: 
• ⊕ addition 
• ⊖ subtraction 
• ⊗ multiplication 
• ⊘ division 

 𝑎 ⊕ 𝑏 represents the addition of 𝑎 and 𝑏 
•  𝑎 and 𝑏 are floating-point numbers 

• the result is a floating-point number 

• in general, 𝑎 + 𝑏 ≠ 𝑎 ⊕ 𝑏 

 A generic floating-point operation on 𝑥 is 

written ∘ (𝑥) 

Workshop on Numerical Computing — Floating-Point Arithmetic 39 



Error-Free Transformations 

An error-free transformation (EFT) is an 

algorithm which determines the rounding error 

associated with a floating-point operation. 

 Addition/subtraction 

 𝑎 + 𝑏 = (𝑎⨁𝑏) + 𝑡 

 Multiplication 

 𝑎𝑏 = 𝑎⨂𝑏 + 𝑡 

 There are others 
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Error-Free Transformations 

 Under most conditions, the rounding error is 

itself a floating-point number 
• Thus 𝑎 + 𝑏 = 𝑠 + 𝑡 where all are floating-point 

numbers 

• This is still a powerful analytical tool even when 𝑡 
is not a floating-point number 

 An EFT can be implemented using only 

floating-point computations in the working 

precision 

 Rounding error is often called the 

approximation error 
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EFT for Addition:  FastTwoSum 

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where 

 𝑎 ≥ 𝑏  

 𝑠 = 𝑎 ⊕ 𝑏 

void 
FastTwoSum( const double a, const double b, 
      double* s, double* t ) { 
    //  Requires that 𝒂 ≥ 𝒃  
    //  No unsafe optimizations! 
    *s = a + b; 
    *t = b - ( *s - a ); 
    return; 
} 
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EFT for Addition:  TwoSum 

Compute 𝑎 + 𝑏 = 𝑠 + 𝑡 where 

 𝑠 = 𝑎 ⊕ 𝑏 

void 
TwoSum( const double a, const double b, 
        double* s, double* t ) { 
    //  No unsafe optimizations! 
    *s = a + b; 
    double z = *s – b; 
    *t = ( a - z ) + ( b - ( *s - z ) ); 
    return; 
} 
 

Workshop on Numerical Computing — Floating-Point Arithmetic 43 



EFTs for Addition 

 A realistic implementation of FastTwoSum 

requires 3 flops and a branch 

 TwoSum takes 6 flops but requires no 

branches 

 TwoSum is usually faster on modern 

processors 

 Recall that this discussion is restricted to 

radix 2 and round to nearest even 
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Precise Splitting Algorithm 

 Known as Veltkamp’s algorithm 

 Calculates 𝑥ℎ and 𝑥𝑙 such that 𝑥 = 𝑥ℎ + 𝑥𝑙 
exactly 

 For δ < 𝑝, where δ is a parameter, 
• The significand of 𝑥ℎ fits in p − δ digits 

• The significand of 𝑥𝑙 fits in δ digits 

 No information is lost in the transformation 
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Precise Splitting 

 Code fragment 

void 
Split( const double x, const int delta, 
       double* x_h, double* x_l ) { 
    unsigned long c = (1UL << delta) + 1; 
    *x_h = ( c * x ) + ( x - ( c * x ) ); 
    *x_l = x - x_h; 
    return; 
} 
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Precise Multiplication 

 Dekker’s algorithm 

 Computes 𝑠 and t such that 𝑎 × 𝑏 = 𝑠 + 𝑡 
where s= 𝑎⨂𝑏 
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Precise Multiplication Algorithm 

  

#define SHIFT_POW 27 /* 𝑝/2  for Binary64 */ 
void 
Mult( const double a, const double b, 
      double* s, double* t ) { 
    double a_high, a_low, b_high, b_low; 
    Split( a, SHIFT_POW, &a_high, &a_low ); 
    Split( b, SHIFT_POW, &b_high, &b_low ); 
    *s = x * y; 
    *t = -*s + a_high * b_high ; 
    *t += a_high * b_low + a_low * b_high; 
    *t += a_low * b_low; 
    return; 
} 
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Summation Techniques 

 Traditional 

 Sorting and Insertion 

 Compensated 

 Distillation 

 Multiple accumulators 

 

 Reference:  Higham 
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Summation Techniques 

Condition number 

𝐶𝑠𝑢𝑚 =
 𝑎𝑖
 𝑎𝑖

 

 If 𝐶𝑠𝑢𝑚 is “not too large,” the problem is not 

ill-conditioned and traditional methods may 

suffice 

 But if 𝐶𝑠𝑢𝑚 is “too large,” we want results 

appropriate to higher precision without 

actually using a higher precision 

 But if higher precision is available, use it!  
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Traditional Summation 

 𝑠 =  𝑥𝑖
𝑛
𝑖=0  

 Code fragment 
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double 
Sum( const double* x, const int n ) { 
    int i; 
    for ( i = 0; i < n; i++ ) { 
        Sum += x[ i ]; 
    } 
    return Sum; 
} 
 



Sorting and Insertion 

 Reorder the operands 
• Increasing magnitude 

• Decreasing magnitude 

 Insertion 
• First sort by magnitude 

• Remove 𝑥1 and 𝑥2 and compute their sum 

• Insert that sum on the list keeping it sorted 

• Repeat until only 1 element is left on the list 

 Many variations 
• If lots of cancellation, sorting by decreasing 

magnitude often better 

• Sterbenz’s lemma 
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Compensated Summation 

 Based on FastTwoSum and TwoSum 

techniques 

 Knowledge of the exact rounding error in a 

floating-point addition is used to correct the 

summation 
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Compensated Summation 

 Code fragment 
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double 
Kahan( const double* x, const int n ) { 
    double sum = x[ 0 ]; 
    double c = 0.0; 
    double y; 
    int i; 
    for ( i = 1; i < n; i++ ) { 
        y = x[ i ] + c; 
        FastTwoSum( sum, y, &sum, &c ); 
    } 
    return sum; 
} 
 



Compensated Summation 

 Many variations known 

 Consult the literature: 
• Kahan 

• Knuth 

• Priest 

• Pichat and Neumaier 

• Rump, Ogita and Oishi 

• Shewchuk 

• Arénaire Project (ENS) 
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Other Summation Techniques 

 Distillation 
• Separate accumulators based on exponents of 

operands 

• Additions are always exact until the accumulators 

are finally added 

 Long accumulators 
• Emulate greater precision 

• E.g., double-double 
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Choice of Summation Technique 

 Performance 

 Error  bound 
• independent of n? 

 Condition number 
• Is it known? 

• Difficult to determine? 

• Some algorithms allow it to be determined 

simultaneously with the sum:  can evaluate the 

suitability of the result 

 No one technique fits all situations all the 

time 
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Dot Product  

 Use of EFTs 

 Recast to summation 

 Compensated dot product 
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Dot Product  

 Condition number: 

𝐶𝑑𝑜𝑡⁡𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =
2 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 𝑎𝑖 ⋅ 𝑏𝑖
𝑛
𝑖=1

 

 If 𝐶 is not too large, a traditional algorithm 

can be used 
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Dot Product  

 The dot product of 2 vectors of dimension 𝑛 
can be reduced to computing the sum of 2𝑛 
floating-point numbers 
• Split and form products 

 Algorithms can be constructed such that the 

result computed in precision 𝑝 is as accurate 

as though the dot product was computed in 

precision 2𝑝 and then rounding back 

 Consult the work of Ogita, Rump and Oishi 
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Polynomial Evaluation 

 Horner’s method 

 Use of EFTs 

 Compensated 
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Polynomial Evaluation 

Horner’s method 

𝑝 𝑥 = 𝑎𝑖𝑥
𝑖

𝑛

𝑖=0

 

where 𝑥 and all 𝑎𝑖 are all floating-point 

numbers 

Workshop on Numerical Computing — Floating-Point Arithmetic 62 



Polynomial Evaluation 

 Code fragment 
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double 
Horner( const double* a, const int n, 
  double x ) { 
    int i; 
    double p = 0.0; 
    for ( i = n; i >= 0; i-- ) { 
        p = p * x + a[ i ]; 
    } 
    return p; 
} 
 



Polynomial Evaluation 

Compensated Horner’s method: 

 Let 𝑝0 =⁡Horner(a,n,x) 

 Determine π(𝑥) and σ(𝑥) where 
•  π(𝑥) and σ(𝑥) are polynomials of degree 𝑛 − 1 

with coefficients π𝑖 and σ𝑖 
• such that 

𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥) 
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Polynomial Evaluation 

Compensated Horner’s method: 

 𝑝 𝑥 = 𝑝0 + π 𝑥 + σ(𝑥) 

 Error analysis shows that under certain 

conditions, 𝑝(𝑥) is as accurate as evaluating 

𝑝0 in twice the working precision 

 Even if those conditions are not met, one 

can apply the method recursively to π(𝑥) 
and σ(𝑥) 
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Data Interchange 

Moving floating-point data between platforms 

without loss of information? 

 Exchange binary data 

 Use of %a and %A 
• Encodes the internal bit patterns via hex digits 

 Formatted decimal strings 
• Requires sufficient decimal digits to guarantee 

“round-trip” reproducibility 

• Depends on accuracy of run-time 

binary↔decimal conversion routines on all 

platforms 
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