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= Part | — Fundamentals
* Motivation
* Some properties of floating-point numbers
e Standards
e A trip through the floating-point numbers

= Part Il — Technigues
* Error-free transformations
e Summation
* Dot product
* Polynomial evaluation
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Motivation

Why is floating-point arithmetic important?
Reasoning about floating-point arithmetic
Why do standards matter?

Techniques which improve floating-point
* Accuracy

* Versatility

* Performance
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Why Is Floating-Point Arithmetic
Important?

® |t is ubiquitous in scientific computing
* Most research in HEP can’t be done without it

" Need to implement algorithms which
* Get the best answers
* Get the best answers quickly
* Get the best answers all the time

= A rigorous approach to floating-point is
seldom taught in programming courses
* Too many think floating-point arithmetic is
— Approximate in a random ill-defined sense
— Mysterious
— Often wrong
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Reasoning about Floating-Point
Arithmetic

It's important because

® One can prove algorithms are correct
* One can even prove they are portable

® One can estimate the round-off and
approximate errors in calculations

® This increases confidence In the results
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Some Empirical Properties of
Floating-Point Numbers

They aren't real
* There are only a finite number of them
* They do not form a field

Even if a and b are floating-point numbers,

a®b may not be
 Similarly for ©, ® and @

Operations may not associate:

* (a®b)Dc # aB(bDc)
e Similarly for & and ®

Operations may not distribute:
* a®(bDc) # (a R b)D(a®c)
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There have been three major standards
affecting floating-point arithmetic:

= |EEE 754-1985 Standard for Binary Floating-
Point Arithmetic

= |EEE 854-1987 Standard for Radix
ndependent Floating-Point Arithmetic

= |[EEE 754-2008 Standard for Floating-Point
Arithmetic
* \We will concentrate on this one since it Is current
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N, i IEEE 754-1985
Standardized/specified
" Formats

® Rounding modes
® Operations
® Special values

= Exceptions
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® Only described binary floating-point
arithmetic

" Two basic formats specified:
* single precision (mandatory)
* double precision

" An extended format was associated with

each basic format
* Double extended: 1A32 “80-bit” format
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® “Radix-independent”
* But essentially only radix 2 or 10 considered

® Constraints on relationships among
* Number of bits of precision
* Mininum and maximum exponent

= Constraints between various formats
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® Standardize common practices
* Quadruple precision

® Standardize effects of new/improved

algorithms
* Radix conversion
* Correctly rounded elementary functions

= Remove ambiguities

® |mprove portability
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" Merged 754-1985 and 854-1987

* But tried not to invalidate hardware which
conformed to 754-1985

® Standardized
* Quadruple precision
* Fused multiply-add (FMA)

= Resolve ambiguities
* Aids portability between implementations

Workshop on Numerical Computing — Floating-Point Arithmetic
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Formats

" |nterchange
* Used to exchange floating-point data between
Implementations/platforms
* Fully specified as bit strings
— Does not address endianness

= Extended and Extendable formats
* Encodings not specified
* May match interchange formats

= Arithmetic formats

* A format which represents operands and results
for all operations required by the standard

Workshop on Numerical Computing — Floating-Point Arithmetic 13
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1 w
expo significand
IEEE Format Storage W o .
Name Size P min
Binary32 Single 32 8 24 -126
Binary64 Double 64 11 53 -1022
Binary128 Quad 128 15 113 -16382

emax

+127
+1023
+16383
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Formats

= Basic formats:
* Binary with lengths of 32, 64 and 128 bits
* Decimal with lengths of 64 and 128 bits

" Other formats:
* Binary with a length of 16 bits
-p=11
- emin = —14, e g = +15

* Decimal with a length of 32 bits

Workshop on Numerical Computing — Floating-Point Arithmetic
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Larger Formats

" Parameterized based on size k:
* k > 128 and must be a multiple of 32

* p =k —roundnearest(4 X log,(k)) + 13
e w=Fk— p

* emax =271 -1

" For example, on all conforming platforms,
Binary1024 will have:

* k=1024
* p=1024—-40+ 13 =997
° w =27

¢ e .. =+67108863
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" Radix
* Either 2 or 10

= Representation specified by
* Radix
* Sign
* Exponent
— Biased exponent
- enin MUst be equal to 1 — e, 4y
e Significand

— “hidden bit” for normal values

Workshop on Numerical Computing — Floating-Point Arithmetic
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For this workshop, we will limit our discussion
to
" Radix 2

" Binary32, Binary64 and Binary128 formats

* Covers SSE and AVX

— l.e., modern processors

* Not considering “double extended” format
— “IA32 x87” format

* Not considering decimal formats

" Round to nearest even
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Value of a Floating-Point Number

The value of a floating-point number is
determined by 4 quantities:

" sign s € {0,1}

= radix B
* Sometimes called the “base”

® precision p
* thedigitsare x;, 0 <i<p,where 0 <x; <f

= exponent e Is an integer
* Cnin S € = emay

Workshop on Numerical Computing — Floating-Point Arithmetic
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The value of a floating-point number can be
expressed as
p—1

= (B ) X

1=0
where the significand Is

p—1
m=Q uf
1=0

0<m<§f

with
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The value can also be written
p—1
X = (_)Sﬁe—p+1 2 xin_i_l
i=0

where the integral S|gn|f|cand IS

M = Exlpll

0<M<pP

with

Workshop on Numerical Computing — Floating-Point Arithmetic
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= Addition, subtraction
= Multiplication

= Division

= Remainder

" Square root

= All with correct rounding

* correct rounding: return the correct finite result
using the current rounding mode

Workshop on Numerical Computing — Floating-Point Arithmetic
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= Conversion to/from integer
* Conversion to integer must be correctly rounded

= Conversion to/from decimal strings
e Conversions must be monotonic
* Under some conditions, binary—decimal—binary
conversions must be exact

Workshop on Numerical Computing — Floating-Point Arithmetic 23
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" Zero
* signed
" |nfinity
* signed
= NaN
* Quiet NaN

e Signaling NaN

* NaNs do not have a sign: they aren’'t a number
— The sign bit is ignored

* NaNs can “carry” information

Workshop on Numerical Computing — Floating-Point Arithmetic 24
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= Underflow
* Absolute value of a non-zero result is less than [3¢min
(.e., It is subnormal)
* Some ambiguity: before or after rounding?

= Qverflow

* Absolute value of a result greater than the largest
finite value Q) = 26max x (2 — 217P)
* Resultis +oo

= Division by zero
* x/y where x is finite and non-zero and y = 0

" |nexact
* Result, after rounding, is not exact

" |nvalid

Workshop on Numerical Computing — Floating-Point Arithmetic 25
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= |nvalid
* An operand is a sNaN
* J/xwhere x <0
« However V=0 = —0
* (=00) + (+), (+00) + (—0)
* (=00) — (=), (+00) — (+0)
* (£0) X (£o0)
* (£0)/(£0) or (£oo0) /(o)
e some floating-point —integer or decimal
conversions

Workshop on Numerical Computing — Floating-Point Arithmetic
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" round to nearest
* round to nearest even
* In the case of ties, select result with even significand
 required for binary and decimal
* the default rounding mode for binary
* round to nearest away
* required only for decimal

" round toward +oo

" round toward —oo

" round toward 0O

Workshop on Numerical Computing — Floating-Point Arithmetic
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The standard recommends the following
functions be correctly rounded:

m X e*—1,2% 2% -1, 10% 10* -1
" Jog,(P)fora=e,2,10and ® =x,1 4+ x

n JxZ4+y2 1/yx, (1+ )", x™, x1/7

" sin(x), cos(x), tan(x), sinh(x), cosh(x),
tanh(x) and the inverse functions

" sin(mx), cos(mx)

" And more...

Workshop on Numerical Computing — Floating-Point Arithmetic
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Why this may be difficult to do...
Consider 21.e4596526bf94dP—31

® The correct answer IS

1.0052fc2ec2b537FFFfffffffffff4..

" You need to know the result to 115 bits to
determine the correct rounding.

" “The Table-Makers Dilemma”
* Rounding = f(x) gives same result as rounding

f(x)
® See publications from ENS group

Workshop on Numerical Computing — Floating-Point Arithmetic 29
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“No general way exists to predict how many
extra digits will have to be carried to compute a
transcendental expression and round it

correctly to some preassigned number of
digits.”

W. Kahan
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Exact operations

= If% < x < 2y and subnormals are available,

then x — y Is exact
* Sterbenz’s lemma

= But what about catastrophic cancellation?
e Subtracting nearly equal numbers loses accuracy

® The subtraction itself does not introduce any

error
* it may amplify a pre-existing error

Workshop on Numerical Computing — Floating-Point Arithmetic 31
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Exact operations

= Multiplication/division by 2™ Is exact
* |In the absence of under/overflow

= Multiplication of numbers with significands

having sufficient low-order O digits
* Precise splitting and Dekker’'s multiplication
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" 0x0000000000000000 +zero
" 0x0000000000000001 omallest |
|
" Ox000ffffFEFEEEEEE largest subnormal
" 0x0010000000000000 smallest normal

" 0x001fffFfFFEFEEFE
" 0x0020000000000000 I 2 X smallest

normal
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= 0x0020000000000000 | normal
n
B Ox7fefffffffffffff largest normal
" 0x7££0000000000000 +infinity
" 0x7££0000000000001 NaN
|
B Ox7fEfffEfLff££££££EE NaN

" 0x8000000000000000 -zero
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" = 0x8000000000000000 -zero
= 0x8000000000000001 omatlest negative

“largest” negative

" Ox800fFEFEEEEEEEES subnormal
" 0x8010000000000000 smallest’ negative

normal
n
" Ox£f££0000000000000 -infinity
" Ox£f££0000000000001 NaN
[ |
B Oxffffffffffffffff I NaN
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Time for a break...
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" Error-Free Transformations
" Summation
" Dot Products

= Polynomial Evaluation

= Data Interchange

Workshop on Numerical Computing — Floating-Point Arithmetic
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® Floating-point operations are written:
* P addition
* O subtraction
* @ multiplication
* (O division

" a @ b represents the addition of a and b
* a and b are floating-point numbers
* the result is a floating-point number
*ingeneral,a+b#a®b

= A generic floating-point operation on x Is
written o (x)

Workshop on Numerical Computing — Floating-Point Arithmetic 39



\ » :
N em Error-Free Transformations

‘e
CERN

openlab

An error-free transformation (EFT) is an
algorithm which determines the rounding error
associated with a floating-point operation.

= Addition/subtraction
a+b=(adb)+t
= Multiplication
ab = (a®b) +t

" There are others

Workshop on Numerical Computing — Floating-Point Arithmetic 40
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® Under most conditions, the rounding error Is

itself a floating-point number

* Thus a + b = s + t where all are floating-point
numbers

* This is still a powerful analytical tool even when t
IS not a floating-point number

= An EFT can be implemented using only

floating-point computations in the working
precision

® Rounding error is often called the
approximation error

Workshop on Numerical Computing — Floating-Point Arithmetic 41
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EFT for Addition: FastTwoSum

Compute a + b = s + t where

" |a| = |b]
"s=a@b
void

FastTwoSum( const double a, const double b,
double* s, double* t ) {
// Requires that |a| = |b]
// No unsafe optimizations!
*s = a + b;
*t =b - ( *s - a);
return;

Workshop on Numerical Computing — Floating-Point Arithmetic
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Compute a + b = s + t where
"s=a@b

void
TwoSum( const double a, const double b,
double* s, double* t ) {

// No unsafe optimizations!
*s = a + b;
double z = *s - b;
*t=(a-z)+(b-(* -2z));
return;

Workshop on Numerical Computing — Floating-Point Arithmetic
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= A realistic implementation of FastTwoSum
requires 3 flops and a branch

® TwoSum takes 6 flops but requires no
branches

® TwoSum is usually faster on modern
Processors

= Recall that this discussion Is restricted to
radix 2 and round to nearest even

Workshop on Numerical Computing — Floating-Point Arithmetic
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= Known as Veltkamp’s algorithm

= Calculates x;, and x; such that x = x;, + x;
exactly

" For § < p, where § is a parameter,
* The significand of x;, fits in p — ¢ digits
* The significand of x; fits in é digits

= No information is lost Iin the transformation

Workshop on Numerical Computing — Floating-Point Arithmetic 45
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Precise Splitting

Code fragment

void
Split( const double x, const int delta,
double* x_h, double* x 1 ) {
unsigned long ¢ = (1UL << delta) + 1;
*xh=(c*x )+ (x-(c*x));
*x 1 = x - x_h;
return;

Workshop on Numerical Computing — Floating-Point Arithmetic
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® Dekker’s algorithm

" Computes sandtsuchthataxb=s+t
where s= a®b

Workshop on Numerical Computing — Floating-Point Arithmetic 47
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#define SHIFT POW 27 /* [p/2] for Binary64 */
void
Mult( const double a, const double b,
double* s, double* t ) {
double a_high, a low, b _high, b low;
Split( a, SHIFT POW, &a high, &a low );
Split( b, SHIFT POW, &b high, &b low );
*s = x *y;
*t = -*s + a_high * b_high ;
*t += a_high * b_low + a_low * b _high;
*t += a_low * b_low;
return;
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Summation Techniques

Traditional

Sorting and Insertion
Compensated
Distillation

Multiple accumulators

Reference: Higham

Workshop on Numerical Computing — Floating-Point Arithmetic
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Condition number
fo 2 ail
S Ylayl

" |f C,,,.,, IS “Not too large,” the problem is not
ll-conditioned and traditional methods may
suffice

= Butif C,,p IS "to0 large,” we want results
appropriate to higher precision without
actually using a higher precision

= But if higher precision is available, use it!
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"5 =2icoXi

® Code fragment

double
Sum( const double* x, const int n ) {
int 1;
for (1 =0; 1< n; i++ ) {
Sum += x[ 1 ];
}

return Sum;

Workshop on Numerical Computing — Floating-Point Arithmetic 51
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= Reorder the operands
* Increasing magnitude
* Decreasing magnitude

® |nsertion
* First sort by magnitude
* Remove x; and x, and compute their sum
* Insert that sum on the list keeping it sorted
* Repeat until only 1 element is left on the list

= Many variations
* If lots of cancellation, sorting by decreasing
magnitude often better
e Sterbenz’s lemma

Workshop on Numerical Computing — Floating-Point Arithmetic
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" Based on FastTwoSum and TwoSum
techniques

= Knowledge of the exact rounding error in a
floating-point addition is used to correct the

summation
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Compensated Summation

" Code fragment

double
Kahan( const double* x, const int n ) {

double sum = x[ 0 ];
double ¢ = 0.0;
double vy;
int 1;
for (1 =1; i < n; i++ ) {
y =x[ 1]+ ¢c;
FastTwoSum( sum, y, &sum, &c );

¥

return sum;

Workshop on Numerical Computing — Floating-Point Arithmetic

54



\ »

", iy Compensated Summation

CERN

openlab

= Many variations known

" Consult the literature:
* Kahan
* Knuth
* Priest
* Pichat and Neumaier
* Rump, Ogita and Oishi
* Shewchuk
* Arénaire Project (ENS)
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= Distillation
* Separate accumulators based on exponents of
operands

* Additions are always exact until the accumulators
are finally added

" | ong accumulators
* Emulate greater precision
* E.g., double-double
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" Performance

®" Error bound
* independent of n?

= Condition number
* |s it known?
* Difficult to determine?
* Some algorithms allow it to be determined
simultaneously with the sum: can evaluate the
suitability of the result

® No one technique fits all situations all the
time
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" Use of EFTs
" Recast to summation

= Compensated dot product
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® Condition number:

2 i 1|al bI
Cdot product — ‘ Z a.
=11

® |f C I1s not too large, a traditional algorithm
can be used

Workshop on Numerical Computing — Floating-Point Arithmetic 59



\ »

™ 17 Dot Product
®" The dot product of 2 vectors of dimension n
can be reduced to computing the sum of 2n

floating-point numbers
* Split and form products

= Algorithms can be constructed such that the
result computed in precision p IS as accurate
as though the dot product was computed In
precision 2p and then rounding back

® Consult the work of Ogita, Rump and Oishi
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" Horner's method
" Use of EFTs

= Compensated
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Horner’'s method
n

o)=Y

=0

where x and all a; are all floating-point
numbers

Workshop on Numerical Computing — Floating-Point Arithmetic
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Polynomial Evaluation

" Code fragment
double

Horner( const double* a, const int n,

double x ) {

int 1;

double p = 0.0;

for (1 =n; 1> 0; i-- ) {
p=p*x+alil];

}

return p;

Workshop on Numerical Computing — Floating-Point Arithmetic
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Compensated Horner’'s method:
" | et py =Horner(a,n,Xx)

® Determine m(x) and o(x) where
* m(x) and o(x) are polynomials of degree n — 1
with coefficients m; and o;
* such that

p(x) = po + m(x) + o(x)
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Compensated Horner’'s method:

" p(x) =po +m(x) + o(x)

" Error analysis shows that under certain

conditions, p(x) Is as accurate as evaluating
po IN twice the working precision

" Even If those conditions are not met, one

can apply the method recursively to nt(x)
and o(x)
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Moving floating-point data between platforms
without loss of information?

= Exchange binary data

= Use of %a and %A
* Encodes the internal bit patterns via hex digits

" Formatted decimal strings
* Requires sufficient decimal digits to guarantee
“round-trip” reproducibility
* Depends on accuracy of run-time
binary<>decimal conversion routines on all
platforms
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