
From CRLibm to Metalibm :
assisting the production of high-performance

proven floating-point code

Florent de Dinechin
Arénaire/AriC project



My research group

The Arénaire project (soon to be renamed AriC) @ École Normale
Supérieure de Lyon :
Computer Arithmetic at large

Hardware and software

From addition to linear algebra

Fixed point, floating-point, multiple-precision,
finite fields, ....

Pervasive concern of performance, numerical
quality and validation
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Outline

Introduction : performance versus accuracy

Elementary function evaluation

Formal proof of floating-point code for the masses

Other tools toward MetaLibm

Conclusion
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Bottom line of this talk

Common wisdom

The more accurate you compute, the more expensive it gets

In practice

We (hopefully) remark it when our computation is not accurate
enough.

But do we remark it when it is too accurate for our needs ?

Reconciling performance and accuracy ?

Or, regain performance by computing just right ?
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Double precision spoils us

The standard binary64 format (formerly known as double-precision)
provides roughly 16 decimal digits.

Why should anybody need such accuracy ?

Count the digits in the following

Definition of the second : the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

Definition of the metre : the distance travelled by light in vacuum
in 1/299,792,458 of a second.

Most accurate measurement ever (another atomic frequency)
to 14 decimal places

Most accurate measurement of the Planck constant to date :
to 7 decimal places

The gravitation constant G is known to 3 decimal places only
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Parenthesis : then why binary64 ?

This PC computes 109 operations per second (1 gigaflops)

An allegory due to Kulisch

print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ≈ a heap of 10 cm

109 flops ≈ heap height speed of 100m/s, or 360km/h

A teraflops (1012 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (1015 op/s)

each operation may involve a relative error of 10−16,
and they accumulate.

Doesn’t this sound wrong ?

We would use these 16 digits just to accumulate garbage in them ?
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Back to the point

... which was :

Mastering accuracy for performance

When implementing a “computing core”

A goal : never compute more accurately than needed

Two sub-goals

Know what accuracy you need
Know how accurate you compute

“Computing cores” considered so far : elementary functions, sums of
products, linear algebra, Euclidean lattices algorithms.
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Elementary function evaluation

Introduction : performance versus accuracy

Elementary function evaluation

Formal proof of floating-point code for the masses

Other tools toward MetaLibm

Conclusion
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How does your PC compute elementary functions ?

Rule of the game : use only +, −, ×
(and maybe / and

√
but they are expensive).

Polynomial approximation works on a small interval

for a fixed approximation error, d̊ grows with size of the interval
typically x < 2−8 =⇒ d̊ ≈ 3...10 ensures εapprox < 2−55

Argument reduction : using mathematical identities, transform
large arguments in small ones

Simplistic example : an exponential

identity : ea+b = ea × eb

split x = a + b

a : k leading bits of x
b : lower bits of x b << 1

tabulate all the ea (2k entries)

use a Taylor polynomial for eb
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Know how accurate you compute

Approximation errors

example : approximate a function f with a polynomial p :
||p − f ||∞ ?
in general : approximate an object by another one

Rounding errors

each individual error well specified by IEEE-754
but error accumulation difficult to manage

In physics : time discretization errors, etc
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Initial motivation

Correctly rounded elementary functions

IEEE-754 floating-point single or double-precision

Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (libm)

Correctly rounded : As perfect as can be, considering the finite
nature of floating-point arithmetic

same standard of quality as +,×, /,√

Now recommended by the IEEE754-2008 standard,
but long considered too expensive

because of the Table Maker’s Dilemma
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The Table Maker’s Dilemma

Finite-precision algorithm for evaluating f (x)

Approximation + rounding errors −→ overall error bound ε.

What we compute : y such that f (x) ∈ [y − ε, y + ε]

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 13
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The first digital signature algorithm

I want 12 significant digits

I have an approximation scheme that
provides 14 digits

or,
y = log(x)± 10−14

“Usually” that’s enough to round

y = x , xxxxxxxxxxx17± 10−14

y = x , xxxxxxxxxxx83± 10−14

Dilemma when

y = x , xxxxxxxxxxx50± 10−14

The first table-makers rounded these cases randomly, and recorded them to

confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 14
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Solving the table maker’s dilemma

Ziv’s onion peeling algorithm

1. Initialisation : ε = ε1

2. Compute y such that f (x) = y ± ε
3. Does y ± ε contain the middle point between two FP numbers ?

If no, return RN(y)
If yes,dilemma ! Reduce ε, and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.
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Solving the table maker’s dilemma

y ± ε1

Ziv’s onion peeling algorithm

1. Initialisation : ε = ε1

2. Compute y such that f (x) = y ± ε
3. Does y ± ε contain the middle point between two FP numbers ?

If no, return RN(y)
If yes,dilemma ! Reduce ε, and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 15



Solving the table maker’s dilemma

y ± ε1

Ziv’s onion peeling algorithm

1. Initialisation : ε = ε1

2. Compute y such that f (x) = y ± ε
3. Does y ± ε contain the middle point between two FP numbers ?

If no, return RN(y)

If yes,dilemma ! Reduce ε, and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 15
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Solving the table maker’s dilemma

y ± ε1 y ± ε2
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1. Initialisation : ε = ε1

2. Compute y such that f (x) = y ± ε
3. Does y ± ε contain the middle point between two FP numbers ?

If no, return RN(y)
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Accuracy versus performance

When we know that the loop terminates...

CRLibm : 2-step approximation process

first step fast but accurate to ε1

sometimes not accurate enough

(rarely) second step slower but always accurate enough

Tavg = T1 + p2T2

For each step, we want to prove a tight bound ε such that

|F (x)− f (x)

f (x)
| ≤ ε

Overestimating ε2 degrades T2 ! (common wisdom)
Overestimating ε1 degrades p2 !

?

y ± ε1 y ± ε1

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 16
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First function development in Arénaire

First correctly rounded elementary function in CRLibm

exp by David Defour

worst-case time T2 ≈ 10,000 cycles

complex, hand-written proof

duration : a Ph.D. thesis (2002)

Conclusion was :

performance and memory consumption of CR elem function is OK

problem now is : performance and coffee consumption of the programmer
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Latest function developments in Arénaire

C. Lauter at the end of his PhD,

development time for sinpi, cospi, tanpi :

2 days

worst-case time T2 ≈ 1,000 cycles

(but as a result of three more PhDs)
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Summary of the progress made

Tavg = T1 + p2T2

Reduction of T1 by learning from Intel

Reduction of p2 by automating the computation of tight ε1

(p2 is proportional to ε1)

Reduction of T2 by computing just right

Reduction of coffee consumption by automating the whole thing

The MetaLibm vision

Automate libm expertise so that a new, correct libm can be written for
a new processor/context in minutes instead of months.
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Formal proof
of floating-point code

for the masses

Introduction : performance versus accuracy

Elementary function evaluation

Formal proof of floating-point code for the masses

Other tools toward MetaLibm

Conclusion
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crlibm.pdf 5 years ago : 124 pages of this

1 yh2 = yh∗yh ; \
2 t s = yh2 ∗ ( s3 . d + yh2∗( s5 . d + yh2∗s7 . d ) ) ; \
3 Add12 (∗psh ,∗ p s l , yh , y l+t s∗yh ) ; \

Upon entering DoSinZero, we have in yh + yl an approximation to the ideal reduced value ŷ = x − k π
256

with a relative
accuracy εargred :

yh + yl = (x − k
π

256
)(1 + εargred) = ŷ(1 + εargred) (1)

with, depending on the quadrant, sin(ŷ) = ± sin(x) or sin(ŷ) = ± cos(x) and similarly for cos(ŷ). This just means that ŷ
is the ideal, errorless reduced value.
In the following we will assume we are in the case sin(ŷ) = sin(x), (the proof is identical in the other cases), therefore the
relative error that we need to compute is

εsinkzero =
(∗psh + ∗psl)

sin(x)
− 1 =

(∗psh + ∗psl)

sin(ŷ)
− 1 (2)

One may remark that we almost have the same code as we have for computing the sine of a small argument (without range
reduction). The difference is that we have as input a double-double yh + yl, which is itself an inexact term.

At Line 4, the error of neglecting yl and the rounding error in the multiplication each amount to half an ulp :

yh2 = yh2(1 + ε−53), with yh = (yh + yl)(1 + ε−53) = ŷ(1 + εargred)(1 + ε−53)
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Therefore
yh2 = ŷ2(1 + εyh2) (3)

with
εyh2 = (1 + εargred)2(1 + ε−53)3 − 1 (4)

Line 5 is a standard Horner evaluation. Its approximation error is defined by :

Pts(ŷ) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)

This error is computed in Maple as previously, only the interval changes :

εapproxts =

∥∥∥∥∥ xPts(x)

sin(x)− x
− 1

∥∥∥∥∥
∞

We also compute εhornerts, the bound on the relative error due to rounding in the Horner evaluation thanks to the
compute horner rounding error procedure. This time, this procedure takes into account the relative error carried by yh2,
which is εyh2 computed above. We thus get the total relative error on ts :

ts = Pts(ŷ)(1 + εhornerts) =
sin(ŷ)− ŷ

ŷ
(1 + εapproxts)(1 + εhornerts) (5)
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The final Add12 is exact. Therefore the overall relative error is :

εsinkzero =
((yh⊗ ts)⊕ yl) + yh

sin(ŷ)
− 1

=
(yh⊗ ts + yl)(1 + ε−53) + yh

sin(ŷ)
− 1

=
yh⊗ ts + yl + yh + (yh⊗ ts + yl).ε−53

sin(ŷ)
− 1

Let us define for now
δaddsin = (yh⊗ ts + yl).ε−53 (6)

Then we have

εsinkzero =
(yh + yl)ts(1 + ε−53)2 + yl + yh + δaddsin

sin(ŷ)
− 1

Using (1) and (5) we get :

εsinkzero =
ŷ(1 + εargred)× sin(ŷ)−ŷ

ŷ
(1 + εapproxts)(1 + εhornerts)(1 + ε−53)2 + yl + yh + δaddsin

sin(ŷ)
− 1

To lighten notations, let us define

εsin1 = (1 + εapproxts)(1 + εhornerts)(1 + ε−53)2 − 1 (7)
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We get

εsinkzero =
(sin(ŷ)− ŷ)(1 + εsin1) + ŷ(1 + εargred) + δaddsin − sin(ŷ)

sin(ŷ)

=
(sin(ŷ)− ŷ).εsin1 + ŷ.εargred + δaddsin

sin(ŷ)

Using the following bound :

|δaddsin| = |(yh⊗ ts + yl).ε−53| < 2−53 × |y|3/3 (8)

we may compute the value of εsinkzero as an infinite norm under Maple. We get an error smaller than 2−67.
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4 pages for 3 lines of code...

Two years of experience showed that nobody (including myself) should
trust such a proof

(and that nobody reads it anyway).

We wish we had an automatic tool that

takes a set of C files,

parses them,

and outputs “The overall error of the computation is ...”.

It’s hopeless, of course :

Where, in your code, can you read what it is supposed to compute ?

Most of the knowledge used to build the code is not in the code
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4 pages for 3 lines of code...

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that

takes a set of C files,

parses them,

and outputs “The overall error of the computation is ...”.

It’s hopeless, of course :

Where, in your code, can you read what it is supposed to compute ?

Most of the knowledge used to build the code is not in the code

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 25
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Trusted error computation means : formal proof

but... automatic proof assistants are not there yet

Research on formal proofs for arithmetic

John Harrison at Intel (HOL light)
Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
And many others...

Proving Sterbenz Lemma (one operation) is worth a full paper.

Here is the typical crlibm code for which I want the relative error :

1 yh2 = yh*yh ;
2 ts = yh2 * (s3 + yh2*(s5 + yh2*s7));
3 tc = yh2 * (c2 + yh2*(c4 + yh2*c6 ));
4 Mul12 (&cahyh_h ,&cahyh_l , cah , yh);
5 Add12(thi , tlo , sah ,cahyh_h);
6 tlo = tc*sah+(ts*cahyh_h +(sal+(tlo+( cahyh_l +(cal*yh +

cah*yl))))) ;
7 Add12 (*psh ,*psl , thi , tlo);

... and it changes all the time as we optimize it.
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Let us take a simple example

1 s3 = -0.16666666666666665741480812812369549646973609924;
2 s5 = 8.33333333262892793358300735917509882710874081e-3;
3 s7 = -1.98400103113668426196153360407947729981970042e-4;
4

5 y2 = y * y;
6 ts = y2 * (s3 + y2*(s5 + y2*s7));
7 r = y + y*ts

evaluation of sine as an odd polynomial
p(y) = y + s3y 3 + s5y 5 + s7y 7

(think Taylor for now)

reparenthesized as p(y) = y + y 2t(y 2) to save operations

y + y*ts is more accurate than y*(1+ts) in floating-point,
do you see why ?
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Rounding errors piled over approximations

y2 = y * y;

ts = y2 * (s3 + y2*(s5 + y2*s7));

r = y + y*ts

This polynomial is an approximation to sin(y)

Oops, I wrote its coefficients in decimal !

y is not the ideal reduced argument Y (such that x = Y + k π
256 )

We have a rounding error in computing y 2

y2 already stacks two errors. We evaluate ts out of it

There is a rounding error hidden in each operation.

How many correct bits at the end ?
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My programmer’s genius is hidden in this code

y*(1+ts) is a bit less accurate than y + y*ts in floating-point

That’s because |t| < 2−14 because |y | < 2−7 (not in the code)

1

+ t

= 1+t

y

+ y*t

= y+y*t
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Gappa

Written by Guillaume Melquiond, Gappa is a tool that

takes an input that closely matches your C file,

forces you to express what this code is supposed to compute

... and some numerical property to prove (expressed in terms of
intervals)

and eventually outputs a proof of this property suitable for
checking by Coq or HOL Light

Try it, it’s free software
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Should I present interval arithmetic ?

Using a machine’s finite precision, manipulate reals safely

represent a real x in a machine as an interval [xl , xr ]
guaranteed to enclose it

xl and xr are finitely representable numbers (e.g. floating-point)
Example : π represented by [3.14, 3.15]

Operation ⊕ on the reals → its interval counterpart

Guarantees based on the inclusion property

Ix ⊕ Iy must be an interval Iz such that

∀x ∈ Ix ,∀y ∈ Iy , x ⊕ y ∈ Iz

Example : interval addition using floating-point arithmetic

[a, b] + [c , d ] is [RoundDown(a + c), RoundUp(b + d)]

(multiplication, division similar but more complex)
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A Gappa tutorial

1 # Con ven t ion : u n c a p i t a l i z e d v a r i a b l e s match t h e v a r i a b l e s i n t h e C code .
2
3 y = float <ieee_64 ,ne >( dummy); # y i s a d o u b l e
4
5 #−−−−−−−−−−−−−−− T r a n s c r i p t i o n o f t h e C code −−−−−−−−−−−−−−−−−−−−−−−−−−
6
7 s3 float <ieee_64 ,ne >= -1.6666666666666665741480812812369549646974e-01;
8 s5 float <ieee_64 ,ne >= 8.3333333333333332176851016015461937058717e-03;
9 s7 float <ieee_64 ,ne >= -1.9841269841269841252631711547849135968136e-04;

10
11 y2 float <ieee_64 ,ne >= y * y;
12 ts float <ieee_64 ,ne >= y2 * (s3 + y2*(s5 + y2*s7));
13 r float <ieee_64 ,ne >= y + y*ts;
14
15 #−−−−−−−− Mathemat ica l d e f i n i t i o n o f what we a r e a p p r o x i m a t i n g −−−−−−−−
16 # ( The same e x p r e s s i o n as i n t h e code , but w i t h o u t r o u n d i n g e r r o r s )
17
18 Y2 = Y * Y;
19 Ts = Y2 * (s3 + Y2*(s5 + Y2*s7));
20 R = Y + Y*Ts;
21
22 #−−−−−−−−−−−−−−−−−−−−−− The theorem to p r o v e −−−−−−−−−−−−−−−−−−−−−−−−−−
23 {
24 # Hypotheses ( n u m e r i c a l v a l u e s computed by S o l l y a )
25 Y in [ -6.15e-3, 6.15e-3] # Pi /512 , rounded up
26 /\ y - Y in [-2.53e-23, 2.53e-23] # max abs . r a n g e r e d u c t i o n e r r o r
27 /\ R-SinY in [-3.55e-23, 3.55e-23] # a p p r o x i m a t i o n e r r o r ( t h i s d e f i n e s SinY )
28 ->
29 r-SinY in ? # A g o a l : a b s o l u t e e r r o r
30 /\
31 (r-SinY)/SinY in ? # Another g o a l : r e l a t i v e e r r o r
32 }
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tutorial1.gappa

$ gappa < tutorial1.gappa

Results for Y in [-0.00615, 0.00615] and y - Y in [-2.53e-23, 2.53e-23] and PolyY - SinY in [-3.55e-23, 3.55e-23]:

r - SinY in [-2^(-60.9998), 2^(-60.9998)]

Warning: some enclosures were not satisfied.

Missing (r - SinY) / SinY

$

A tight bound on the absolute error

No bound for the relative error

of course, I have to prove that SinY cannot come close to zero
that’s formal proof for you

We should now try gappa -Bcoq
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How does Gappa work ?

Gappa tries to associate an interval with each expression.

Interval arithmetic is used to combine these intervals, until the goal
is reached.

Naively, it would lead to interval bloat. Here for instance
r ≈ SinY ∈ [−2−7, 2−7]
so r− SinY ∈ [−2−6, 2−6] using naive IA.

Gappa uses rewriting of expressions
As r = float64ne(E);

try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;

(hopefully now the sum of two smaller intervals)
Add user-defined rewriting rules when Gappa is stuck

That’s how you explain your floating-point tricks to the tool

Internally, construction of a proof graph

Branches are cut when a shorter path or a better bound are found.
The final graph will be used to generate the formal proof.
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Gappa’s theorem library

Predefined set of rewriting rules :

float64ne(a)- b ->(float64ne(a)- a)+ (a - b);

...

Support library of theorems (with their Coq proofs) :
Theorems giving the errors when rounding

I a in [...] ->(float64ne(a)-a)/a in [...]

Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)

Classical theorems like Sterbenz Lemma
...

To obtain a good relative error, Gappa will demand to prove that y may
not be subnormal...
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y + y*ts is a bit more accurate than y*(1+ts)

14 r1 float <ieee_64 ,ne >= y*(1+ts);
15 r2 float <ieee_64 ,ne >= y+y*ts;
16
17 yts float <ieee_64 ,ne >= y*ts; # f o r l i g h t e r h i n t s
18
19 #−−−−−−−− Mathemat ica l d e f i n i t i o n o f what we a r e a p p r o x i m a t i n g −−−−−−−−
20 # ( The same e x p r e s s i o n as i n t h e code , but w i t h o u t r o u n d i n g e r r o r s )
21 Y2 = y*y;
22 Ts = Y2 * (s3 + Y2*(s5 + Y2*s7));
23 Poly = y*(1+Ts);
24 #−−−−−−−−−−−−−−−−−−−−−− The theorem to p r o v e −−−−−−−−−−−−−−−−−−−−−−−−−−
25 {
26 # Hypotheses ( n u m e r i c a l v a l u e s computed by S o l l y a )
27 y in [1b-200, 6.15e-3] # l e f t : Kahan/ Douglas a l g o r i t h m . R i g h t : Pi /512 , rounded up
28 ->
29 r1 -/Poly in ? # r e l a t i v e e r r o r
30 /\
31 r2 -/Poly in ? # r e l a t i v e e r r o r
32 }
33
34 #−−−−−−−−−−−−−−−−−−Loads o f r e w r i t i n g h i n t s needed f o r r 2 −−−−−−−−−−−−−−−−−−−−
35 y+yts -> y* ( (1+ts) + ts*((yts -y*ts) / (y*ts))) {y*ts <> 0};
36
37 (r2 -Poly)/Poly -> ((r2 - (y+yts))/(y+yts) + 1) * ( ((y+yts)/y) / (1+Ts)) -1 {1+Ts

<>0};
38
39 (y+yts)/y ->
40 # ( y+y∗ t s−y∗ t s+y t s ) / y ;
41 # 1+ t s + ( yt s−y∗ t s ) / y ;
42 1+ts + ts*( (yts -y*ts)/(y*ts) ) {y*ts <> 0};
43
44 ((y+yts)/y) / (1+Ts) -> (1+ts)/(1+Ts) + ts*( (yts -y*ts)/(y*ts) )/(1+Ts) {1+Ts <>0};
45
46 (1+ts)/(1+Ts) -> 1 + (Ts*((ts-Ts)/Ts))/(1+Ts) {1+Ts <>0};
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tutorial2.gappa

$ gappa < tutorial2.gappa

Results for y in [7.88861e-31, 0.00615]:

(r1 - Poly) / Poly in [-2^(-52.415), 2^(-52.415)]

(r2 - Poly) / Poly in [-2^(-52.9777), 2^(-52.9339)]

$

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 37



Conclusion on Gappa

I probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn’t understand my Gappa proof, you just don’t
understand my C code)

if you don’t know where it is stuck, ask it (by adding goals)
then add rewriting rules to help it

It is built upon very solid theoretical fundations

What we have now is generators of code + Gappa proof

The same RR work for large classes of generated codes.

Also support for arbitrary-precision fixed-point.
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Other tools toward MetaLibm

Introduction : performance versus accuracy

Elementary function evaluation

Formal proof of floating-point code for the masses

Other tools toward MetaLibm

Conclusion
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MPFR

Multiple Precision Floating-point correctly Rounded

MPFI : interval arithmetic on top of MPFR
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Sollya

The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

multiple-precision, last-bit accurate evaluation of arbitrary
expressions

apologizes each time it rounds something
a demo ?

guaranteed infinite norm ||f (x)||∞ even in degenerate cases

||f (x)− P(x)||∞ is a degenerate case...
Gappa bounds the rounding errors, this bounds the approximation
error

Machine-efficient polynomial approximation
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The Patriot bug

In 1991, a Patriot missile failed to intercept a Scud, and 28 people were
killed.

The code worked with time increments of 0.1 s.

But 0.1 is not representable in binary.

In the 24-bit format used, the number stored was
0.099999904632568359375

The error was 0.0000000953.

After 100 hours = 360,000 seconds, time is wrong by 0.34s.

In 0.34s, a Scud moves 500m

(similar problems have been discovered in civilian air traffic control
systems, after near-miss incidents)

Test : which of the following increments should you use ?

10 5 3 1 0.5 0.25 0.2 0.125 0.1
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Machine-efficient polynomial approximation

Remez’ minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients

float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

this saves a few bits of accuracy
especially relevant for small precisions (FPGAs)
that’s how we get our polynomials

Nice number theory behind.
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Machine-efficient polynomial approximation

Remez’ minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients

float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

this saves a few bits of accuracy
especially relevant for small precisions (FPGAs)
that’s how we get our polynomials

Nice number theory behind.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 43



Classical doubled FP

Store a 2p-digit number y as two p-digit numbers yh and yl

y = yh + yl

exponent(yl) ≤ exponent(yh)− p

yh yl

Example

Decimal format, p = 3 digits,
3.14159 stored as yh = 3.14, yl = 1.59e − 3

yh

yl

A lot of litterature to compute efficiently on doubled-FP.
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Never compute more accurately than you need

Polynomial evaluation P(y) when y < 2−k

a0

a1y

a2y
2

k

2k

any
n

2−p

For CRLibm

doubled-binary64 (106 bits) is not enough,

but triple-binary64 (159 bits) is overkill
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An example of overlaping triple-double arithmetic

Add233 : add a double-FP to a triple-FP

Require: ah + a` is a double-double number and bh + bm + b` is a
triple-double number such that |bh| ≤ 2−2 · |ah| , |a`| ≤ 2−53 · |ah| ,
|bm| ≤ 2−βo · |bh| , |b`| ≤ 2−βu · |bm| .

Ensure: rh + rm + r` is a triple-double number approximating
ah + a` + bh + bm + b` with a relative error given by the Theorem on next
slide.
(rh, t1)← Fast2Sum (ah, bh)
(t2, t3)← Fast2Sum (a`, bm)
(t4, t5)← Fast2Sum (t1, t2)
t6 ← RN(t3 + b`)
t7 ← RN(t6 + t5)
(rm, r`)← Fast2Sum (t4, t7)

βo and βu measure the possible overlap of the significands of the inputs.
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The associated theorem

Theorem (Result overlap and relative error of Add233 )

Under the conditions on previous slide, the values rh, rm, and r`
returned by the algorithm satisfy

rh + rm + r` = ((ah + a`) + (bh + bm + b`)) · (1 + ε) ,

where ε is bounded by

|ε| ≤ 2−βo−βu−52 + 2−βo−104 + 2−153.

The values rm and r` will not overlap at all, and the overlap of rh and
rm will be bounded by

|rm| ≤ 2−γ · |rh|

with
γ ≥ min (45, βo − 4, βo + βu − 2) .
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30 more, but who will read the proofs ?

See crlibm source and documentation for the operators themselves.

Manipulating these theorems by hand is painful : Lauter’s metalibm
assembles such operators automatically for polynomial evaluation.
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CGPE

Code generation for polynomial evaluation

explores different parallelizations of a polynomial on a VLIW
processor

generates code and Gappa proof of the evaluation error

Used to generate the code for the division and square root of FLIP,
a Floating-Point Library for Integer Processors
(collaboration with ST Microelectronics)
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Conclusion

Introduction : performance versus accuracy

Elementary function evaluation

Formal proof of floating-point code for the masses

Other tools toward MetaLibm

Conclusion
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Main messages

Are you able to express what your code is supposed to compute ?

If yes, we can help you sort out the gory floating-point issues.

If you’re computing accurately enough, you’re probably computing
too accurately.
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The Arénaire Touch

Library

Program

developed using

links against

Development tools

General−purpose libraries

User−space

tools and libraries

SollyaGappa

FLIP

MPFI

CRLibm FloPoCo

FPLLLMPFR

All these developments are free software.
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More automation means more optimization

log(1 + x)

Two parameters

k from 1 to 13, defines table size
target accuracy, between 20 and 120 bits

1203 implementations, all formally checked

z axis : timings in arbitrary units
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 40
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My other research project

Computing just right for FPGAs

Finer granularity : never compute 1 bit that you don’t need

More qualitative freedom : build the operators you need

A squarer, a multiplier by ln(2), a divider by 3...

Compute more efficiently ?

http://flopoco.gforge.inria.fr/
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Thank you for your attention
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