From CRLibm to Metalibm :
assisting the production of high-performance
proven floating-point code

e

Florent de Dinechin
Arénaire/AriC project

ENS DE LYON

@ %I INRIA

/”7'\\
‘ Lyon 1

The Arénaire project (soon to be renamed AriC) @ Ecole Normale
Supérieure de Lyon :
Computer Arithmetic at large

@ Hardware and software

@ From addition to linear algebra HANDBOOK o

FLOATING-POINT

o Fixed point, floating-point, multiple-precision, MRITHAETIC
finite fields,

@ Pervasive concern of performance, numerical
quality and validation

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Introduction : performance versus accuracy
Elementary function evaluation

Formal proof of floating-point code for the masses
Other tools toward Metalibm

Conclusion

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Introduction :
performance versus accuracy

Introduction : performance versus accuracy

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Common wisdom
The more accurate you compute, the more expensive it gets

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Common wisdom
The more accurate you compute, the more expensive it gets

In practice

o We (hopefully) remark it when our computation is not accurate
enough.

o But do we remark it when it is too accurate for our needs?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Common wisdom
The more accurate you compute, the more expensive it gets

In practice

o We (hopefully) remark it when our computation is not accurate
enough.

o But do we remark it when it is too accurate for our needs?

Reconciling performance and accuracy ?

Or, regain performance by computing just right ?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

The standard binary64 format (formerly known as double-precision)
provides roughly 16 decimal digits.

Why should anybody need such accuracy ?
Count the digits in the following
@ Definition of the second : the duration of 9,192,631,770 periods of

the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

@ Definition of the metre : the distance travelled by light in vacuum
in 1/299,792,458 of a second.

@ Most accurate measurement ever (another atomic frequency)
to 14 decimal places

@ Most accurate measurement of the Planck constant to date :
to 7 decimal places

@ The gravitation constant G is known to 3 decimal places only

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ This PC computes 10° operations per second (1 gigaflops)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ This PC computes 10° operations per second (1 gigaflops)

An allegory due to Kulisch

o print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ~ a heap of 10 cm
10° flops ~ heap height speed of 100m/s, or 360km /h

©

A teraflops (10'2 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (10 op/s)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ This PC computes 10° operations per second (1 gigaflops)

An allegory due to Kulisch

o print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ~ a heap of 10 cm
10° flops ~ heap height speed of 100m/s, or 360km /h

A teraflops (10'2 op/s) prints to the moon in one second

©

Current top 500 computers reach the petaflop (10 op/s)

@ each operation may involve a relative error of 10716,
and they accumulate.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ This PC computes 10° operations per second (1 gigaflops)

An allegory due to Kulisch

o print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ~ a heap of 10 cm
10° flops ~ heap height speed of 100m/s, or 360km /h

©

A teraflops (10'2 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (10 op/s)

@ each operation may involve a relative error of 10716,
and they accumulate.

Doesn't this sound wrong ?
We would use these 16 digits just to accumulate garbage in them ? J

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

... which was :
Mastering accuracy for performance
When implementing a “computing core”

@ A goal : never compute more accurately than needed

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

... which was :

Mastering accuracy for performance
When implementing a “computing core”
@ A goal : never compute more accurately than needed

@ Two sub-goals
o Know what accuracy you need

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

... which was :

Mastering accuracy for performance
When implementing a “computing core”
@ A goal : never compute more accurately than needed

@ Two sub-goals

o Know what accuracy you need
o Know how accurate you compute

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

... which was :

Mastering accuracy for performance
When implementing a “computing core”
@ A goal : never compute more accurately than needed

@ Two sub-goals

o Know what accuracy you need
o Know how accurate you compute

“Computing cores” considered so far : elementary functions, sums of
products, linear algebra, Euclidean lattices algorithms.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Elementary function evaluation

Elementary function evaluation

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetalLibm

Rule of the game : use only +, —, x

(and maybe / and ,/~ but they are expensive).

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

10

Rule of the game : use only +, —, x
(and maybe / and ,/~ but they are expensive).

@ Polynomial approximation works on a small interval

o for a fixed approximation error, d° grows with size of the interval
o typically x < 278 = d" & 3...10 ensures Zpprox < 27 °

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Rule of the game : use only +, —, x
(and maybe / and ,/~ but they are expensive).
@ Polynomial approximation works on a small interval

o for a fixed approximation error, d° grows with size of the interval
o typically x < 278 = d" & 3...10 ensures Zpprox < 27 °

@ Argument reduction : using mathematical identities, transform
large arguments in small ones

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

10

Rule of the game : use only +, —, x
(and maybe / and ,/~ but they are expensive).
@ Polynomial approximation works on a small interval

o for a fixed approximation error, d° grows with size of the interval
o typically x < 278 = d" & 3...10 ensures Zpprox < 27 °

@ Argument reduction : using mathematical identities, transform
large arguments in small ones

Simplistic example : an exponential

o identity : e?th = 2 x &P
o splitx=a+b>b

o a: k leading bits of x

o b : lower bits of x b<<1

o tabulate all the e? (2X entries)

@ use a Taylor polynomial for e?
Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ Approximation errors

o example : approximate a function f with a polynomial p :
llp— flloc ?
o in general : approximate an object by another one

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

11

@ Approximation errors

o example : approximate a function f with a polynomial p :
llp = flloc ?
o in general : approximate an object by another one

@ Rounding errors

o each individual error well specified by IEEE-754
o but error accumulation difficult to manage

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

11

@ Approximation errors
o example : approximate a function f with a polynomial p :
lp—flleo?
o in general : approximate an object by another one
@ Rounding errors
o each individual error well specified by IEEE-754
o but error accumulation difficult to manage

@ In physics : time discretization errors, etc

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

11

Correctly rounded elementary functions
o |EEE-754 floating-point single or double-precision

o Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (1ibm)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 12

Correctly rounded elementary functions
o |EEE-754 floating-point single or double-precision

o Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (1ibm)

o Correctly rounded : As perfect as can be, considering the finite
nature of floating-point arithmetic

o same standard of quality as +, X, /, va

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

12

Correctly rounded elementary functions
o |EEE-754 floating-point single or double-precision

@ Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (1ibm)

o Correctly rounded : As perfect as can be, considering the finite
nature of floating-point arithmetic

o same standard of quality as +, X, /, va
@ Now recommended by the IEEE754-2008 standard,

but long considered too expensive
because of the Table Maker's Dilemma

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

o Finite-precision algorithm for evaluating f(x)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

13

o Finite-precision algorithm for evaluating f(x)

@ Approximation + rounding errors — overall error bound €.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

13

o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.

e What we compute : y such that f(x) € [y — &,y + |

yxe
: | : | : | : | »

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

13

o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.
e What we compute : y such that f(x) € [y — &,y +]

yxe
: | \\I | | | | | »

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

13

o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.
e What we compute : y such that f(x) € [y — &,y +]

y%ﬁe y':_|te
: | | | | | | >

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

13

o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.
e What we compute : y such that f(x) € [y — &,y +]

yte y*te

| | T\: | :A: | -

Dilemma if this interval contains a midpoint between two FP numbers

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

13

LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

* Toaoer
2 S il oocen yca000,36ksE 0

3 | e toec03

& | asetonongors Teoceg

5| aestamoes, Teomes | oesosaiziynd F
& | oartrpnprs A o oyozonfogity

7| caseesen awossr | eeseseigess

8 | oesbotons so0och | oyomoog,gzsany

9 | cwsiiishd Bosocg | oyemons,gobezg

1 | oopapasiims Tocooot | eyo00me,oq34ag

12 | corpiiades ssaoosa | eassencaaisy

15| oghiiint zococog | 00000013028,

1 | ouarniorsss el Rt

15 | omboniirges B wooocos | a,e000m,a1714 6
16 | oaepingstisg 2000068 | 600000, 260578

7 o5a3044,89213,8 xeomecy | gy00000,3

B | oassaniserio focaocd | 0,00000,34743,4

1 | sty om0y | optenipotsy

tor | sopsnnmank 10000008 | 6,00000,00414,3

w2 | oputdopizizys Toocdecd | o 00eecolilys

103 1383, 7azgr,t 10005053 | 0,000,013,

1o | coronmione Toosaoeg | o,c00m,00737,3

105 | speaitdsasgenr £ Tosasess | o00000,carzr,g A
106 | meanosiegng soaccens | erosincader,

107 | opigitizratie tococcer | gyueese,egage,

108 | eesishy seaecoel | opomooioifrng

w09 | opsraGi roocsoog | o,z0000,73908,6

Rl B ke zoscooeer | 6000000045,

o2 | opeentspriisg 08000802 | o,00000,00084,9

o03 | ooeszegiing do0000003 | a0650,00110,3

T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7

1o | ecatgfestn B otcesaos | o00mmm,conrzr T
1026 | ayoeapgaglona Frs——y Y ol

zoo7 | 00010894708, 5 osowco07 | e0000m,eozeqe

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

sy | oio03bnicia 1coceecey | eymmces,oa19ns

100 | 004,337, Teouceceon | ococsococed

toot | 00000888503, T Tacosooeod | ¢jo0csacocofy

saca3 | eemorn,east, T 3 | syessseyocs,e

Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.

s000f | omeornzoeang E prm— e
xescd | oj0008,04985,5 Tonooenon | essecagssait

10007 | cj00080,3%57,8 Toccavoeoy | ejuenne,oueiog

1030 | o 0003472506, Zeaunsacod | 5050000034,

10009 | oyo00posipsg Toss000c09 | ojpe0c0,00039,1

Florent de Dinechin, projet AriC (ex-Arénaire) m to MetaLibm

LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

* Toaoer
2 S il oocen yca000,36ksE 0

3| ewrmuani 00003

& | asetonongors Tocoog

5| aestamoes, Teomes | oesosaiziynd F
& | oarbrsuarps A e Pstongin -4

7| cbaesopen awossr | eeseseigess

8 | oesbotons sococh | mymoss,gzsany

9 | cwsiiishd Bosocg | oyemons,gobezg

1 | oopapasiims Tocooot | eyo00me,oq34ag

= o,07918,12460,5 Fooveod #ypo0e0,085ls,g

15| oghiiint zococog | 00000013028,

1| ouanieses el Rt

15 | ezbopizpes B ooocos | o,00m00,217147 G
16 | oaepingstisg 2000068 | 600000, 260578

7 o5a3044,89213,8 xeomecy | gy00000,3

B | oassaniserio foooooB | 0,00000,34743,4

19 | srrlenisengs Tecacey | eyeeene,igolyy

tor | sopsnnmank 10000008 | 6,00000,00414,3

w2 | opetboiring Tooosood | oj0000e,c08eky

103 1283,72247,1 10005053 | 0,000,013,

1o | coronmione 1ooveoog | o,c0000,01737,2

105 | speaitdsasgenr £ Tosasess | o00000,carzr,g A
106 | meanosiegng soaccens | erosincader,

107 | opigitizratie tococcer | gyueese,egage,

108 | eesishy seaecoel | opomooioifrng

109 | oesrASigrnd so0oc00g | o,s00m0,039ck,6

Rl B ke zoscooeer | 6000000045,

o0z | 000086773853 08000802 | o,00000,00084,9

o03 | ooeszegiing om000603 | veao,00n10

T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7

1o | ecatgfestn B otcesaos | o00mmm,conrzr T
1026 | ayoeapgaglona Frs——y Y ol

zoo7 | 00010894708, 5 osowco07 | e0000m,eozeqe

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

100y | eco3bg,idhag Io00s0009 | £,0u620,00395,3.

200t | oj00004,34272,8 [y P—

xo002 | e,o000b68508, T Tacosooeod | ¢jo0csacocofy

ace3 | wovor3,eastd, T 3 | o,00000,080T3,0

Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.

1000 | omeoaLzeaang B frsm—— e
xescd | oj0008,04985,5 oty p———4

10007 | cj00080,3%57,8 Toccavoeoy | ejuenne,oueiog

1030 | o 0003472506, Tosoescod | oy0ca00,0004,7

10009 | oyooniposiyng Tossococag | opc0seye00gg,

Florent de Dinechin, projet AriC (ex-Arénaire) m to MetaLibm

LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

T Tt | e
2 D el 00002 o0a060,30858,0 . .
3 477G 135472 1eec03 i

| |z | St @ | have an approximation scheme that
5 \Gals7,e0063,4 . oemanirins F . ..
K 778T5, 13503,8 A a00o oy05003,80568,

g | = | provides 14 digits
8 | csessboting socscl | moeooggzsanyy

9 | eorpearsnt Tososy | eseenguarg

5 | oopspattins tocoset | oye00n0,01ing

2| oersifaao,s toooeed | e0000,0888 59

5| orsgai soc000p | o co00m, 13028,

I i Bosacaq | ey00908,1737E,7

is | obop,tzrged B rococog | o cesnmairigs G

16 | apnsline 1006068 | oya0000,3807,8

sz | omseantss 1000007 | g,08005,5

B | oassaniserio focaocd | 0,00000,34743,4

1 | sarberssens so0acsy | eyvecoeysgetig

wr | sepsnnzang seossect | 6,00000,00814,3

w2 | opeltncizig Teosdocd | ¢ ooceyeekibys

toy | 9prByrazer,y Tesos00] | o,00000,08302,9

Iog ©,01703,33393,% Tooguocg. ©,00000,01737,3

105 | speaitdsasgenr £ Tosasess | o00000,carzr,g A

105 | messaestigng ros00ess | craseas,caien,

107 | o0k i709 sosoncoy | o ocsccsogn,t

108 | oes34237550 easoscd | o 00000034744

[P tooceony | o,c00em,u3ek,6

Rl B ke zoscooeer | 6000000045,

P R] Toscooeez | oyonomoiiy

1e03 | ,00430,09330,2 aeveosse3 | oyooces,eendo}

T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7

toof | oj0e226,56615,6 D Tot00s005 | v,00em0,z0217,1 T

1026 | ayoeapgaglona Frs——y Y ol

1007 | ao0gcpgror,s sescoscey | eomeneosere

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

100y | eco3bg,idhag Iooce0ceg | ,00600,0039%,3.

xesot | moasetuiara,d I

toost | 000004808, T Tacossceod | o,coccncocely

sae3 | eyoecroast,x 3 | manonctro

Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.

1000 | oecatroaang B Frmaam— oyeoazt g K,

xamt | oymonsoqphs Sovosesond | eiecncsoncait

10007 | eroostasissr Toosaooosy | o pemcocuezo

1oa0d | 500034, 72906, Toaosnceh | 0,00000,00034,7

10009 | oj000igosiyns Toosoc0ccg | oppoocepoedg,r

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

T BT o
3| = |k @ | have an approximation scheme that
3 4771313547, 10e003 £,90081, 3

+ '-:;;:WN!J Tocoog | o,00000,78714 ave pp

5 iyr,00og, Towoy | mescenizigns F . ..

H 781, 137038 A 300006 oy0candog ity

6 |lSEit = | provides 14 digits
5 | oaehastiny froox S eesp i

PR Py ey Tcsy | opeecongoBirg

i | sopspatins toowat | emonmsgsiag

12| sorsibanso,s oooesr | o0000,088i5,9 ° or,

3 ©,X1394,33523,1 Tocooo) ©,00000,13028,3

1 | o Boarss [remeri Deiicntmnyd = | og(x) =+ 10 14
15 | orzfop,zrp06 B rooncos | o,e00mat7i4 G y = g
A oo Sl Bt

w7 | st ol o

B | ousanterne o000 | 000003474304

g e it ot Boiinise

tor | oonsmuzand Ieotaool | 60000000414,

w2 | opotioiring Toocsod | 0,000,008k,

103 | oeatnrazns Tosessss | ojeaonojony

wg | oerrenmmse xo00000g | g,00m00,01737,2

105 opaitgaggenr € Tesasess oy00000,c2171,5 £

18 202530, 86528 Toscoeel | ¢ 00090,02605,8

o7 002938, 57776, Tooooco7 o,0e008,e3045,1

108 ©503342,37554n5 Bzaccced 6,00000,08474,4

109 | opmdigrng Yoaseooy | esomse,nageh

001 | cusonttgorrtat P

il B sictid ool Denine

1005 | Goeize,osIIn o0200003 | szvesojeetze

2004 | opor7z37Iatx Ioeooceog | oyotoce,canzs,?

faof | oyocatsantng B eseosacs | o ovsescortry T

106 | oom2gp 98072 osccases | o A

1007 | ©,00303,0470f,5 Te000c007 | 0,00008,0030,8

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

aocy | oy00389,0i062,4 100000009 | #,00000,00390,5

200t | oj00004,34272,8 Teouceceon | ococsococed

Koot | wyo00nd,68fas,T Tacosacee | 600000000087

taced | woeenneastl,n 3 | o,00000,080T3,0

Tocog | yecorr,iddiosd seacooceag. | 000000000174

Socsf | sywetatgeatny B Joausossef ciovaatg X,

k| ey Tovononont | ety

o007 | ei00010,3%597 8 Towoaneces | om0, c0edog

1030l | o,00034,72986,9 Teaawoaod | 0,06800,00034,7

10009 | oyo00posipsg Toss000c09 | ojpe0c0,00039,1

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

LOGARITHMICA,

Tabuks iwoestioni Logaritbmerassiafircicns.

T o Toaoor | oyomesniian
2 | sersagsnssg xoocaz | 000030858 0
3 AP, 1eec03 i
& | asetonongors Toocoq | 00008757143
5 | astamecora o I o o F
& | oartrpnprs A Toooh | oyo0002,6opdt

7| cbaesopen aemsey | aeeses,eiggs, s
] ge10Bg98ey,9 soouck ©,0003,47428,7
9 | cwsiiishd Bosocg | oyemons,gobezg
1 | oopapasiims Tocooot | eyo00me,oq34ag
12| sorsibanso,s ssaoosa | eassencaaisy
15| oghiiint zococog | 00000013028,
P 5 el Rt
15 | ezbopizpes B ooocos | o,00m00,217147 G
1 15,39025,6 2008008 | &,00000,2d057,6
7 304892118 prosscei Pessing

B | oassaniserio foooooB | 0,00000,34743,4
19 | srrlenisengs Tecacey | eyeeene,igolyy
tor | sopsnnmank 10000008 | 6,00000,00414,3
o o,01717,6 Tooosood | oj0000e,c08eky
103 1283,72247,1 Teo0ses3 | ojccomm,o1geny
1o | coronmione o00s00g | o,0000m,01737,2
o5 | epesithgasgenr € Tosasess | o00000,carzr,g A
106 | meanosiegng sesccens | ciosec,caden,8
107 | opigitizratie tososear | oyocec,cgage,t
108 | eesishy seaecoel | opomooioifrng
109 | oei7AnGTY Foocwoog | ¢,c000m,5350E,6
x| opoemiderri® P
002 | opentt ging Tosooosea | o,00000,000859
o03 | ooeszegiing om000603 | veao,00n10
T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7
saog | mye0atd,i otcesaos | o00mmm,conrzr T
1056 | aeappgiona Frossnely i
zoo7 | 00010894708, 5 ayosa0n,eogep,e
too$ | @,00346,05331,1 6600068 | o,00000,00347,4
100y | eco3bg,idhag Io00s0009 | £,0u620,00395,3.
raeex 3 Teoncecoon | ococso o003
10052 805, s o,00008,7
Soon3 | wemos,0antd, 1 1ososacee3 | e oetseoreTsie
Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.
1000 | omeoaLzeaang B frsm—— e
xescd | oj0008,04985,5 oty p———4
10007 | ,00080,38957,8 Toccavoeoy | ejuenne,oueiog
1030 | o 0003472506, Tosoescod | oy0ca00,0004,7
10009 | oyooniposiyng Tossococag | opc0seye00gg,

Florent de Dinechin, projet AriC (ex-Arénaire)

* @ | want 12 significant digits

@ | have an approximation scheme that
provides 14 digits

@ or,
y = log(x) £ 1071

@ "“Usually” that’s enough to round

X, x0000000xxx 17 £ 10714

<
Il

y = X, xxx000000xx83 + 10714

From CRLibm to MetaLibm

14

LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

= | e
P i e P o |h n roximation scheme that
3 4771313547, Toeced £,90081, 3
& '-:;;:WN!J Tosoog o,00001, m,I;F ave a app [©
5 a,65hen,000 6,4 Toases ojemann, 1714, . ..
g |imga = &= provides 14 digits
) oga308,99865,9 Toc0cB
9 P ETosA Rococy.
S Rt .
ol st i = @ or,
3 ©,113p4,33523,1 Tocooo) _ 14
s == _
ol Y = e y = log(x) £ 10
3 |22 = =
P R sooson | ey0azeny
B mr‘r;y;rz;.; :—ms n,mﬂu,;g;,‘
3 2527875, ya! daan] wyeusos,igole,3 " 1" 1
o5 || ommeemn A @ “Usually” that's enough to round
w2 | opobsoerziz,s Toootecd | ,00000,00868,6
oy | opmsnzanz Tesesse3 | o)comonyonjery
o4 nﬂm;ﬁ:vi;: o :wvvw: omentrna 14
= SEE = s -~
o | s el o _ OO
= || = (S Y = X, XXXXX: 17 £ 10
108 | ee3UnITSThS easoscd | o 00000034744
109 ©RIT4E4979xE eoxcog | o,ze000,03908,6
Toex | ouoooqtdorrant zoncosear | oesten,cengsg _14
|| =g T | _
el Bl = |==3 ¥ = X, x000000xxxx83 £ 10
T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7
ta0f | o,00216,666156 B FRTIE) e 3
i | s ovocases | oiosennesai
| s e e .
ot | Sgarnc e Y @ Dilemma when
aocy | oy00389,0i062,4 Ioocs0seg | £,00005,00395,9
xeaor | os0004,34372,8 el P——
o002 | 00008, 68502,T Tacosaoead | o,00000,0000,7
saces | mpomernoasth.s psosssonny tingsteyd _ 0 :|: 1 0_14
| == =R ¥ = X, X0000000xxxx 5
1oosf | eeetalyeady B Eseosessef | oenco,cooat,y K,
Xosok | o00026,04985,5 [ESm—— p————
o507 | ©,00580,1%97,8 Toceacecey | emonco,o0030g
00l | ,00034,72586,9 Tosavescel | o,00500,00034,7
x000p | ojo0aig,ostgns zow0000ag | 0000080839,

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 14

LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

= | e
z ©,301E2,99955,5 rovsoz oy00000,308 58,0 . .
3 4771313547, Toeced o000k, eadt 4
) | == | St @ | have an approximation scheme that
¢ | s = . .
7| = provides 14 digits
) oga308,99865,9 Tooock o 4287
9 R s) Rocacy ©y0e003,90847,4
o ez vt | g
5 T e @ or,
3 ©,X1394,33523,1 Tocooo) 0000913028, _ 14
s == _
ol Y = e y = log(x) £ 10
3 ||EEES = =
7 | amsesntps prosscei Pessing
B Hﬁf‘f;;;‘;z;n; :_ﬂ’s “-"W":!gb‘
13 | earbrnieos eeoory | wgesdenigeld,y “ "]
o || o S P @ “Usually” that's enough to round
w2 | opobsoerziz,s Teocteod | 000000008688
toy | 9prByrazer,y Teses0e3 | o,00000,08joz,9
o4 nﬂm;ﬁ:vi;: . :wvvw: ©,0000,00737,2 14
3 e = s _
Eoter = == _
o | Fosvell Ko ¥ = X, x0000000xx 17 £+ 10
108 | oes34237554 I2az0s08 | crocscosciirig
109 ©RIT4E4979xE eoxcog | o,ze000,03908,6
Toer | 0000434077458 T03000001 | ¢,00000,00043,4 —14
|| =g T | _
D= ===y ¥ = X, x000000xxxx83 £ 10
100g | opcIz33iatx Tovooeood | 0,02000,00373,7
toof | oj00236,506176 B Tetcosacs | 6,000m0,00217,1 T
126 a:!xn,m,: osceasod | 000000002806
| s e e .
Tt | sessiieriene = | @ Dilemma when
aocy | oy00389,0i062,4 Ioocs0seg | £,00005,00395,9
10005 | o0004,34272,8 el P——
= oo 14
=55 _
ey | s ¥ = X, xx000000xxx50 £+ 10
Socsf | sywetatgeatny B
CH
o507 | ©,00580,1%97,8
1oa0d | o,00034,72506,5
x000p | ojo0aig,ostgns zow0000ag | 0000080839,

The first table-makers rounded these cases randomly, and recorded them to
confound copiers.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

Ziv's onion peeling algorithm

1. Initialisation : ¢ = g1

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15

Ziv's onion peeling algorithm
1. Initialisation : ¢ = g1
2. Compute y such that f(x) =y +e¢

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 15

Ziv's onion peeling algorithm
1. Initialisation : ¢ = g1
2. Compute y such that f(x) =y +¢
3. Does y =+ € contain the middle point between two FP numbers?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15

Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?
o If no, return RN(y)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15

Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15

Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma!

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 15

Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma! Reduce €, and go back to 2

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15

Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma! Reduce €, and go back to 2

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15

Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma! Reduce €, and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15

When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 16

When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 16

When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J

For each step, we want to prove a tight bound Z such that
|F (x) — f(x)
f(x)

| <%

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 16

When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J

For each step, we want to prove a tight bound Z such that
|F (x) — f(x)
f(x)

@ Overestimating &, degrades T, ! (common wisdom)

| <%

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

16

When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J

For each step, we want to prove a tight bound Z such that
|F (x) = f(x)
f(x)
@ Overestimating £, degrades T, ! (common wisdom)
@ Overestimating 1 degrades p; !

| <%

y:|:€1 y:|:€1
! ! Pil |¢/::\;| -
T T T 7 T

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 16

First correctly rounded elementary function in CRLibm

@ exp by David Defour
@ worst-case time T =~ 10,000 cycles

@ complex, hand-written proof

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

17

First correctly rounded elementary function in CRLibm
@ exp by David Defour
@ worst-case time T =~ 10,000 cycles

@ complex, hand-written proof
@ duration : a Ph.D. thesis (2002)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

17

First correctly rounded elementary function in CRLibm

@ exp by David Defour

@ worst-case time T =~ 10,000 cycles
@ complex, hand-written proof

@ duration : a Ph.D. thesis (2002)

Conclusion was :

o performance and memory consumption of CR elem function is OK

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 17

First correctly rounded elementary function in CRLibm

@ exp by David Defour

@ worst-case time T =~ 10,000 cycles
@ complex, hand-written proof

@ duration : a Ph.D. thesis (2002)

Conclusion was :
o performance and memory consumption of CR elem function is OK

o problem now is : performance and coffee consumption of the programmer

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 17

C. Lauter at the end of his PhD,

@ development time for sinpi, cospi, tanpi :

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

18

C. Lauter at the end of his PhD,

@ development time for sinpi, cospi, tanpi : 2 days

@ worst-case time T = 1,000 cycles

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

18

C. Lauter at the end of his PhD,

@ development time for sinpi, cospi, tanpi : 2 days

@ worst-case time T = 1,000 cycles

(but as a result of three more PhDs)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 18

Tavg =T+ p2T2

Reduction of Ty by learning from Intel

@ Reduction of py by automating the computation of tight £;
(p2 is proportional to 1)

Reduction of T, by computing just right

Reduction of coffee consumption by automating the whole thing

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

19

Tavg =T+ p2T2

Reduction of Ty by learning from Intel

@ Reduction of py by automating the computation of tight £;
(p2 is proportional to 1)

Reduction of T, by computing just right

@ Reduction of coffee consumption by automating the whole thing

The MetalLibm vision

Automate libm expertise so that a new, correct libm can be written for
a new processor/context in minutes instead of months.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 19

Formal proof

of floating-point code
for the masses

Formal proof of floating-point code for the masses

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetalLibm

20

3

yh2 = yhxyh; \
ts = yh2 % (s3.d + yh2x*(s5.d + yh2xs7.d)); \
Add12{*psh *psl, yh, yl+tsxyh); \

Upon entering DoSinZero, we have in yj, + y; an approximation to the ideal reduced value y = x — k% with a relative

accuracy €argred :
™ ~
oty =(x— kizss)(l + €argred) = J(1 + €argred) (1)

with, depending on the quadrant, sin(§) = = sin(x) or sin(§) = =4 cos(x) and similarly for cos(y). This just means that
is the ideal, errorless reduced value.

In the following we will assume we are in the case sin(§) = sin(x), (the proof is identical in the other cases), therefore the
relative error that we need to compute is

(*psh + =psl) (*psh + *psl)
Esinkzero = — 1= -1 (2)
sin(x) sin(9)

One may remark that we almost have the same code as we have for computing the sine of a small argument (without range
reduction). The difference is that we have as input a double-double yh + y1, which is itself an inexact term.

At Line 4, the error of neglecting y; and the rounding error in the multiplication each amount to half an ulp :

yh2 = yh?(1 + € _53), with yh = (yh + y1)(1 + € _53) = J(1 + argrea)(1 + £_53)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

21

Therefore)
yh2 = §°(1 + eyn2)

with 2 3
Eyn2 = (1 + Targred) (1 +8-53)" — 1

Line 5 is a standard Horner evaluation. Its approximation error is defined by :

oy sin(@) — ¥
Pes(9) = T(l + €approxts)

This error is computed in Maple as previously, only the interval changes :

xPys(x) _

Eapp roxts —

sin(x) — x H i

We also compute €}, ornerts: the bound on the relative error due to rounding in the Horner evaluation thanks to the

compute_horner_rounding_error procedure. This time, this procedure takes into account the relative error carried by yh2,

which is Eyna computed above. We thus get the total relative error on ts :

. sin(9) — ¢
ts = Pys(9)(1 + €hornerts) = -

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetalLibm

(1 + eapproxts)(1 + €hornerts)

(%)

22

The final Add12 is exact. Therefore the overall relative error is :

Esinkzero

Let us define for now

Then we have

Esinkzero

Using (1) and (5) we get :

P+ cargred) ¥ Z2E=F (14 copproxte)(1 + hornerts)(1 + € _53) + Y1+ ¥h + Saddsin

((h®ts) Byl) +yb
sin(9)
(h@ts+yl)1+e_s3)+yb
sin(9)

yh®ts+yl+yh + (yh® ts +yl).e_s3

sin(7)

Saddsin = (Yh ® ts +yl).e 53

(yh+ y1)ts(1+e_53)° + y1 + yh + Saddsin

sin(9)

-1

Esinkzero

To lighten notations, let us define

2
esin1 = (1 + €approxts)(1 + €hornerts)(1 + €_53)° — 1

Florent de Dinechin, projet AriC (ex-Arénaire)

sin(9)

From CRLibm to MetaLibm

23

We get

(sin(9) — 9)(1 + €gin1) + J(1 + €argred) + Jaddsin — sin(9)

-
sinkzero sin(f/)
~ (sin(¥) = 9)-€sin1 + V-Cargred + Saddsin
sin(9)
Using the following bound :
—53 3
[0adasin| = (/A ® ts +y1).e_s3] < 2777 x |y[7/3 (8)

we may compute the value of g, kzero as an infinite norm under Maple. We get an error smaller than 2767,

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 24

Two years of experience showed that nobody (including myself) should
trust such a proof

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

25

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

25

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
@ takes a set of C files,

@ parses them,

@ and outputs “The overall error of the computation is ...".

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

25

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
@ takes a set of C files,

@ parses them,

@ and outputs “The overall error of the computation is ...".

It's hopeless, of course :

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 25

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
o takes a set of C files,
@ parses them,
@ and outputs “The overall error of the computation is ...".

It's hopeless, of course :
@ Where, in your code, can you read what it is supposed to compute ?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 25

Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
o takes a set of C files,
@ parses them,
@ and outputs “The overall error of the computation is ...".

It's hopeless, of course :
@ Where, in your code, can you read what it is supposed to compute ?

@ Most of the knowledge used to build the code is not in the code

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 25

but... automatic proof assistants are not there yet
@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

26

but... automatic proof assistants are not there yet
@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...

@ Proving Sterbenz Lemma (one operation) is worth a full paper.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

26

but... automatic proof assistants are not there yet

@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...

@ Proving Sterbenz Lemma (one operation) is worth a full paper.

@ Here is the typical crlibm code for which | want the relative error :

yh2 = yh*yh ;

ts = yh2 * (s3 + yh2x*(sb + yh2%*s7));

tc = yh2 * (c2 + yh2*x(c4 + yh2*c6));

Mull2 (&cahyh_h ,&cahyh_1, cah, yh);

Add12 (thi, tlo, sah,cahyh_h);

tlo = tc*sah+(ts*cahyh_h+(sal+(tlo+(cahyh_1+(cal*yh +
cah*yl))))) ;

7 Add12 (*psh,*psl, thi, tlo);

o U W N

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

but... automatic proof assistants are not there yet

@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...

@ Proving Sterbenz Lemma (one operation) is worth a full paper.

@ Here is the typical crlibm code for which | want the relative error :

yh2 = yh*yh ;

ts = yh2 * (s3 + yh2x*(sb + yh2%*s7));

tc = yh2 * (c2 + yh2*x(c4 + yh2*c6));

Mull2 (&cahyh_h ,&cahyh_1, cah, yh);

Add12 (thi, tlo, sah,cahyh_h);

tlo = tc*sah+(ts*cahyh_h+(sal+(tlo+(cahyh_1+(cal*yh +
cah*yl))))) ;

7 Add12 (*psh,*psl, thi, tlo);

o U W N

. and it changes all the time as we optimize it.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

1] s3 = -0.16666666666666665741480812812369549646973609924;
2| sb = 8.33333333262892793358300735917509882710874081e-3;
3| 87 = -1.98400103113668426196153360407947729981970042e-4;
4

51 y2 =y *y;

6| ts = y2 *x (83 + y2x(sb + y2%s7));

7| r =y + y*xts

@ evaluation of sine as an odd polynomial

p(y) =y + s3y° + ssy® + s7y”
(think Taylor for now)

o reparenthesized as p(y) = y + y?t(y?) to save operations

@ y + y*ts is more accurate than y*(1+ts) in floating-point,
do you see why?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

27

y2 =y *y;
ts = y2 x (83 + y2x(sb + y2xs7));
r =y + yxts

@ This polynomial is an approximation to sin(y)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

28

2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

This polynomial is an approximation to sin(y)

Oops, | wrote its coefficients in decimal !

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 28

2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)
@ Oops, | wrote its coefficients in decimal!
o

y is not the ideal reduced argument Y (such that x = Y + kg5

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 28

y2 =y *y;
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts
@ This polynomial is an approximation to sin(y)
@ Oops, | wrote its coefficients in decimal!
@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 28

2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)

@ Oops, | wrote its coefficients in decimal !

@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?

@ y2 already stacks two errors. We evaluate ts out of it

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 28

2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)

@ Oops, | wrote its coefficients in decimal !

@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?

@ y2 already stacks two errors. We evaluate ts out of it

@ There is a rounding error hidden in each operation.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 28

2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)

@ Oops, | wrote its coefficients in decimal !

@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?

@ y2 already stacks two errors. We evaluate ts out of it

@ There is a rounding error hidden in each operation.

How many correct bits at the end ?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

28

y*(1+ts) is a bit less accurate than y + y*ts in floating-point
That's because |t| < 27 because |y| < 277 (not in the code)
1 I I y |
+ I t | + I y*t |
= | 1+t | = | yRy*E]

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

29

Written by Guillaume Melquiond, Gappa is a tool that

@ takes an input that closely matches your C file,

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

30

Written by Guillaume Melquiond, Gappa is a tool that
@ takes an input that closely matches your C file,

@ forces you to express what this code is supposed to compute

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 30

Written by Guillaume Melquiond, Gappa is a tool that
@ takes an input that closely matches your C file,
@ forces you to express what this code is supposed to compute

@ ... and some numerical property to prove (expressed in terms of
intervals)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

30

Written by Guillaume Melquiond, Gappa is a tool that
@ takes an input that closely matches your C file,
@ forces you to express what this code is supposed to compute

@ ... and some numerical property to prove (expressed in terms of
intervals)

@ and eventually outputs a proof of this property suitable for
checking by Coq or HOL Light

Try it, it's free software

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

30

Using a machine's finite precision, manipulate reals safely

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

31

Using a machine's finite precision, manipulate reals safely

@ represent a real x in a machine as an interval [x;, x,]
guaranteed to enclose it

o x; and x, are finitely representable numbers (e.g. floating-point)
o Example : 7 represented by [3.14,3.15]

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

31

Using a machine's finite precision, manipulate reals safely

@ represent a real x in a machine as an interval [x;, x,]
guaranteed to enclose it

o x; and x, are finitely representable numbers (e.g. floating-point)
o Example : 7 represented by [3.14,3.15]

@ Operation @ on the reals — its interval counterpart

Guarantees based on the inclusion property
Ix @ I, must be an interval I, such that

Vxel,Vyel, x®yel

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 31

Using a machine's finite precision, manipulate reals safely

@ represent a real x in a machine as an interval [x;, x,]
guaranteed to enclose it

o x; and x, are finitely representable numbers (e.g. floating-point)
o Example : 7 represented by [3.14,3.15]

@ Operation @ on the reals — its interval counterpart

Guarantees based on the inclusion property
Ix @ I, must be an interval I, such that

Vxel,Vyel, x®yel

@ Example : interval addition using floating-point arithmetic
[a, b] + [c,d] is [RoundDown(a+ c), RoundUp(b + d)]

o (multiplication, division similar but more complex)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 31

OO~ U WN -

Convention: uncapitalized variables match the variables in the C code.
y = float<ieee_64,ne>(dummy); # y is a double

#————————————— Transcription of the C code
s3 float<ieee_64,ne>= -1.6666666666666665741480812812369549646974e-01;

sb float<ieee_64,ne>= 8.3333333333333332176851016015461937058717e-03;
s7 float<ieee_64,ne>= -1.9841269841269841252631711547849135968136e-04;

y2 float<ieee_64,ne>= y * y;
ts float<ieee_64,ne>= y2 * (s3 + y2*(s5 + y2%s7));
r float<ieee_64,ne>= y + y*ts;

Mathematical definition of what we are approximating

(The same expression as in the code, but without rounding errors)
Y2 = Y x Y;
Ts = Y2 * (s3 + Y2*(s5 + Y2%s7));

R =Y + Y*Ts;

The theorem to prove

e

Hypotheses (numerical values computed by Sollya)
Y in [-6.15e-3, 6.15e-3] # Pi/512, rounded up
/Ny - Y in [-2.53e-23, 2.53e-23] # max abs. range reduction error
/\ R-8inY in [-3.55e-23, 3.55e-23] # approximation error (this defines SinY)
->

r-SinY in 7 # A goal: absolute error
/\
(r-8inY)/SinY in ? # Another goal: relative error

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 32

$ gappa < tutoriall.gappa

Results for Y in [-0.00615, 0.00615] and y - Y in [-2.53e-23, 2.53
r - SinY in [-27(-60.9998), 27(-60.9998)]

Warning: some enclosures were not satisfied.

Missing (r - SinY) / SinY

$

@ A tight bound on the absolute error

@ No bound for the relative error
o of course, | have to prove that SinY cannot come close to zero
o that's formal proof for you

We should now try gappa -Bcoq

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 33

@ Gappa tries to associate an interval with each expression.

@ Interval arithmetic is used to combine these intervals, until the goal
is reached.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

34

o Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.

o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

34

@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)
Add user-defined rewriting rules when Gappa is stuck
o That’s how you explain your floating-point tricks to the tool

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 34

@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)
@ Add user-defined rewriting rules when Gappa is stuck
o That’s how you explain your floating-point tricks to the tool
@ Internally, construction of a proof graph

o Branches are cut when a shorter path or a better bound are found.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)
@ Add user-defined rewriting rules when Gappa is stuck
o That’s how you explain your floating-point tricks to the tool
@ Internally, construction of a proof graph

o Branches are cut when a shorter path or a better bound are found.
o The final graph will be used to generate the formal proof.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

@ Predefined set of rewriting rules :
o float64ne(a)- b ->(float64ne(a)- a)+ (a - b);
o ...

@ Support library of theorems (with their Coq proofs) :
o Theorems giving the errors when rounding

» a in [...] ->(float64ne(a)-a)/a in [...]
Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

35

@ Predefined set of rewriting rules :
o float64ne(a)- b ->(float64ne(a)- a)+ (a - b);
o ...

@ Support library of theorems (with their Coq proofs) :
o Theorems giving the errors when rounding

» a in [...] ->(float64ne(a)-a)/a in [...]
Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)

o Classical theorems like Sterbenz Lemma
o ...

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

35

@ Predefined set of rewriting rules :
o float64ne(a)- b ->(float64ne(a)- a)+ (a - b);
o ...

@ Support library of theorems (with their Coq proofs) :
o Theorems giving the errors when rounding

» a in [...] ->(float64ne(a)-a)/a in [...]
Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)

o Classical theorems like Sterbenz Lemma
o ...

To obtain a good relative error, Gappa will demand to prove that y may
not be subnormal...

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

35

r1l float<ieee_64 ,ne>= y*(1+ts);
r2 float<ieee_64,ne>= y+y*ts;

yts float<ieee_64,ne>= y*ts; # for lighter hints

Mathematical definition of what we are approximating

(The same expression as in the code, but without rounding errors)
Y2 = y*y;

Ts = Y2 * (s3 + Y2*(sb + Y2%s7));

Poly = y*(1+Ts);

ES The theorem to prove

{

Hypotheses (numerical values computed by Sollya)
y in [1b-200, 6.15e-3] # left: Kahan/Douglas algorithm. Right: Pi/512, rounded up
->

ri-/Poly in ? # relative error
r2-/Poly in 7 # relative error
Loads of rewriting hints needed for r2

y+yts -> y* ((1+ts) + tsx((yts-y*ts) / (yxts))) {y*ts <> 0};
(r2-Poly)/Poly -> ((r2 - (y+yts))/(y+yts) + 1) * (((y+yts)/y) / (1+Ts)) -1 {1+Ts
<>0};
(y+yts)/y ->
(ytyxts—yxtstyts) /y;
1+ts + (yts—ys*ts)/y;
1+ts + ts*((yts-y*ts)/(y*ts)) {y*ts <> 0};
((y+yts)/y) / (1+Ts) -> (1+ts)/(1+Ts) + ts*((yts-y*ts)/(y*xts))/(1+Ts) {1+Ts<>0};
(1+ts) /(1+Ts) -> 1 + (Ts*x((ts-Ts)/Ts))/(1+Ts) {1+Ts<>0};

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

36

$ gappa < tutorial2.gappa

Results for y in [7.88861e-31, 0.00615]:
(r1 - Poly) / Poly in [-27(-52.415), 27(-52.415)]
(r2 - Poly) / Poly in [-27(-52.9777), 27(-52.9339)]

$

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

37

o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)
o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 38

o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)
o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it

@ It is built upon very solid theoretical fundations

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 38

o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)
o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it
@ It is built upon very solid theoretical fundations
@ What we have now is generators of code + Gappa proof
o The same RR work for large classes of generated codes.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 38

o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)

o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it

@ It is built upon very solid theoretical fundations
@ What we have now is generators of code + Gappa proof
o The same RR work for large classes of generated codes.

@ Also support for arbitrary-precision fixed-point.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 38

Other tools toward MetalLibm

Other tools toward MetalLibm

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetalLibm

39

Multiple Precision Floating-point correctly Rounded

MPFI : interval arithmetic on top of MPFR

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

40

The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

@ multiple-precision, last-bit accurate evaluation of arbitrary
expressions

o apologizes each time it rounds something
o a demo?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 41

The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

@ multiple-precision, last-bit accurate evaluation of arbitrary
expressions
o apologizes each time it rounds something
o ademo?
@ guaranteed infinite norm ||f(x)||~ even in degenerate cases

o ||f(x) — P(x)||so is a degenerate case...
o Gappa bounds the rounding errors, this bounds the approximation
error

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

41

The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)
@ multiple-precision, last-bit accurate evaluation of arbitrary
expressions
o apologizes each time it rounds something
o ademo?
@ guaranteed infinite norm ||f(x)||~ even in degenerate cases

o ||f(x) — P(x)||so is a degenerate case...
o Gappa bounds the rounding errors, this bounds the approximation
error

@ Machine-efficient polynomial approximation

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

In 1991, a Patriot missile failed to intercept a Scud, and 28 people were
killed.

@ The code worked with time increments of 0.1 s.

@ But 0.1 is not representable in binary.

@ In the 24-bit format used, the number stored was
0.099999904632568359375

@ The error was 0.0000000953.
@ After 100 hours = 360,000 seconds, time is wrong by 0.34s.
@ In 0.34s, a Scud moves 500m

(similar problems have been discovered in civilian air traffic control
systems, after near-miss incidents)

Test : which of the following increments should you use?
10 5 3 1 05 025 02 0125 01 J

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 42

@ Remez' minimax algorithm finds the best polynomial approximation
over the reals
@ But we need polynomials with machine coefficients
o float, double, fixed-point, ...

@ Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

43

@ Remez' minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients
o float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

o this saves a few bits of accuracy
o especially relevant for small precisions (FPGAs)
o that’s how we get our polynomials

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 43

@ Remez' minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients
o float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

o this saves a few bits of accuracy
o especially relevant for small precisions (FPGAs)
o that’s how we get our polynomials

Nice number theory behind.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

43

@ Store a 2p-digit number y as two p-digit numbers y;, and y;

@ y=Yynt+y
@ exponent(y;) < exponent(y,) —p

| Vh | | Vi

Example

Decimal format, p = 3 digits,
3.14159 stored as y, = 3.14, y; = 1.59e¢ — 3

L
\/

A lot of litterature to compute efficiently on doubled-FP.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 44

Polynomial evaluation P(y) when y < 27k

2—P
| P)
koo
+ :‘_’I qy
+ o] ¥]
foemere e PR
For CRLibm

@ doubled-binary64 (106 bits) is not enough,
@ but triple-binary64 (159 bits) is overkill

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

45

Add233 : add a double-FP to a triple-FP

Require: a, + ay is a double-double number and by + b, + by is a
triple-double number such that |by| <272 |ay], |ag] <2733 -ay|,
|bm| <277 - |ba|, |be| <27P - |bm).

Ensure: r, + ry, + r; is a triple-double number approximating
an+ag + bp+ by + by with a relative error given by the Theorem on next
slide.

(I’h7 1.'1) < Fast2Sum (a;,, bh)
(t2, t3) < Fast2Sum (ag, bm)
(tq, ts) < Fast2Sum (t1, tp)

ts < RN(t3 + by)

t7 < RN(ts + t5)

(fm, re) < Fast2Sum (tq, t7)

Bo and (B, measure the possible overlap of the significands of the inputs.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 46

Theorem (Result overlap and relative error of Add233)

Under the conditions on previous slide, the values ry, rm,, and ry
returned by the algorithm satisfy

rh+ rm+re = ((an + a¢) + (bn + bm + b)) - (L +¢€),

where € is bounded by
el < 2 Pe=Pu=52 | 9=Fo—104 4 5—153

The values rp, and r; will not overlap at all, and the overlap of ry, and
rm will be bounded by
|rm| <277« [l
with
7 > min (45760 — 4,80+ By — 2)-

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

47

@ See crlibm source and documentation for the operators themselves.

@ Manipulating these theorems by hand is painful : Lauter's metalibm
assembles such operators automatically for polynomial evaluation.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 48

Code generation for polynomial evaluation

@ explores different parallelizations of a polynomial on a VLIW
processor

@ generates code and Gappa proof of the evaluation error

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 49

Code generation for polynomial evaluation

@ explores different parallelizations of a polynomial on a VLIW
processor

@ generates code and Gappa proof of the evaluation error

Used to generate the code for the division and square root of FLIP,
a Floating-Point Library for Integer Processors
(collaboration with ST Microelectronics)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

49

Conclusion

Florent de Dinechin, projet AriC (ex-Arénaire)

Conclusion

From CRLibm to MetaLibm

50

@ Are you able to express what your code is supposed to compute ?

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

51

@ Are you able to express what your code is supposed to compute ?
If yes, we can help you sort out the gory floating-point issues.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

51

@ Are you able to express what your code is supposed to compute ?
If yes, we can help you sort out the gory floating-point issues.

o If you're computing accurately enough, you're probably computing
too accurately.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 51

Library ----=> developed using
Program —= links against
General-purpose libraries [MPFR H MPFI] [FPLLL]

Development tools

7 N e

~
’ N~ -

v _ =N -
, - N P
o S
User-space
tools and libraries

All these developments are free software.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

(1+x)
@ Two parameters

@ log

o k from 1 to 13, defines table size

o target accuracy, between 20 and 120 bits

@ 1203 implementations, all formally checked

z axis : timings in arbitrary units

\

N
)
.
N
//%// N
\
N
M
N
X
o
.

\
X

8 \

A
N
N

\
%

\

\
N

\
i

\
\
o
AR
AN\
/&////

\

4
\

\

\
o
//////
\

N
N
A\
&/M%/

\

o
W\

W

\
0
AN
.
|
\
//%%
W
N
N
\
\
3

L

.

53

From CRLibm to MetaLibm

Florent de Dinechin, projet AriC (ex-Arénaire)

Computing just right for FPGAs

@ Finer granularity : never compute 1 bit that you don’t need
@ More qualitative freedom : build the operators you need
o A squarer, a multiplier by In(2), a divider by 3...

@ Compute more efficiently ?

http://flopoco.gforge.inria.fr/

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 54

http://flopoco.gforge.inria.fr/

Florent de Dinechin, projet AriC (ex-Arénaire)

From CRLibm to MetaLibm

55

	Introduction: performance versus accuracy
	Elementary function evaluation
	Formal proof of floating-point code for the masses
	Other tools toward MetaLibm
	Conclusion

