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The Arénaire project (soon to be renamed AriC) @ Ecole Normale
Supérieure de Lyon :
Computer Arithmetic at large

@ Hardware and software

@ From addition to linear algebra HANDBOOK o

FLOATING-POINT

o Fixed point, floating-point, multiple-precision, MRITHAETIC
finite fields, ....

@ Pervasive concern of performance, numerical
quality and validation
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Introduction : performance versus accuracy
Elementary function evaluation

Formal proof of floating-point code for the masses
Other tools toward Metalibm

Conclusion
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Introduction :
performance versus accuracy

Introduction : performance versus accuracy
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Common wisdom
The more accurate you compute, the more expensive it gets
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Common wisdom
The more accurate you compute, the more expensive it gets

In practice

o We (hopefully) remark it when our computation is not accurate
enough.

o But do we remark it when it is too accurate for our needs?
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Common wisdom
The more accurate you compute, the more expensive it gets

In practice

o We (hopefully) remark it when our computation is not accurate
enough.

o But do we remark it when it is too accurate for our needs?

Reconciling performance and accuracy ?

Or, regain performance by computing just right ?
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The standard binary64 format (formerly known as double-precision)
provides roughly 16 decimal digits.

Why should anybody need such accuracy ?
Count the digits in the following
@ Definition of the second : the duration of 9,192,631,770 periods of

the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium 133 atom.

@ Definition of the metre : the distance travelled by light in vacuum
in 1/299,792,458 of a second.

@ Most accurate measurement ever (another atomic frequency)
to 14 decimal places

@ Most accurate measurement of the Planck constant to date :
to 7 decimal places

@ The gravitation constant G is known to 3 decimal places only
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@ This PC computes 10° operations per second (1 gigaflops)
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@ This PC computes 10° operations per second (1 gigaflops)

An allegory due to Kulisch

o print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ~ a heap of 10 cm
10° flops ~ heap height speed of 100m/s, or 360km /h

©

A teraflops (10'2 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (10 op/s)
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@ This PC computes 10° operations per second (1 gigaflops)

An allegory due to Kulisch

o print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ~ a heap of 10 cm
10° flops ~ heap height speed of 100m/s, or 360km /h

A teraflops (10'2 op/s) prints to the moon in one second

©

Current top 500 computers reach the petaflop (10 op/s)

@ each operation may involve a relative error of 10716,
and they accumulate.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm



@ This PC computes 10° operations per second (1 gigaflops)

An allegory due to Kulisch

o print the numbers in 100 lines of 5 columns double-sided :
1000 numbers/sheet

1000 sheets ~ a heap of 10 cm
10° flops ~ heap height speed of 100m/s, or 360km /h

©

A teraflops (10'2 op/s) prints to the moon in one second

Current top 500 computers reach the petaflop (10 op/s)

@ each operation may involve a relative error of 10716,
and they accumulate.

Doesn't this sound wrong ?
We would use these 16 digits just to accumulate garbage in them ? J
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... which was :
Mastering accuracy for performance
When implementing a “computing core”

@ A goal : never compute more accurately than needed
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... which was :

Mastering accuracy for performance
When implementing a “computing core”
@ A goal : never compute more accurately than needed

@ Two sub-goals
o Know what accuracy you need
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... which was :

Mastering accuracy for performance
When implementing a “computing core”
@ A goal : never compute more accurately than needed

@ Two sub-goals

o Know what accuracy you need
o Know how accurate you compute
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... which was :

Mastering accuracy for performance
When implementing a “computing core”
@ A goal : never compute more accurately than needed

@ Two sub-goals

o Know what accuracy you need
o Know how accurate you compute

“Computing cores” considered so far : elementary functions, sums of
products, linear algebra, Euclidean lattices algorithms.
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Elementary function evaluation

Elementary function evaluation
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Rule of the game : use only +, —, x

(and maybe / and ,/~ but they are expensive).
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Rule of the game : use only +, —, x
(and maybe / and ,/~ but they are expensive).

@ Polynomial approximation works on a small interval

o for a fixed approximation error, d° grows with size of the interval
o typically x < 278 = d" & 3...10 ensures Zpprox < 27 °
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Rule of the game : use only +, —, x
(and maybe / and ,/~ but they are expensive).
@ Polynomial approximation works on a small interval

o for a fixed approximation error, d° grows with size of the interval
o typically x < 278 = d" & 3...10 ensures Zpprox < 27 °

@ Argument reduction : using mathematical identities, transform
large arguments in small ones
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Rule of the game : use only +, —, x
(and maybe / and ,/~ but they are expensive).
@ Polynomial approximation works on a small interval

o for a fixed approximation error, d° grows with size of the interval
o typically x < 278 = d" & 3...10 ensures Zpprox < 27 °

@ Argument reduction : using mathematical identities, transform
large arguments in small ones

Simplistic example : an exponential

o identity : e?th = 2 x &P
o splitx=a+b>b

o a: k leading bits of x

o b : lower bits of x b<<1

o tabulate all the e?  (2X entries)

@ use a Taylor polynomial for e?
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@ Approximation errors

o example : approximate a function f with a polynomial p :
llp— flloc ?
o in general : approximate an object by another one
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@ Approximation errors

o example : approximate a function f with a polynomial p :
llp = flloc ?
o in general : approximate an object by another one

@ Rounding errors

o each individual error well specified by IEEE-754
o but error accumulation difficult to manage
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@ Approximation errors
o example : approximate a function f with a polynomial p :
lp—flleo?
o in general : approximate an object by another one
@ Rounding errors
o each individual error well specified by IEEE-754
o but error accumulation difficult to manage

@ In physics : time discretization errors, etc
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Correctly rounded elementary functions
o |EEE-754 floating-point single or double-precision

o Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (1ibm)
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Correctly rounded elementary functions
o |EEE-754 floating-point single or double-precision

o Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (1ibm)

o Correctly rounded : As perfect as can be, considering the finite
nature of floating-point arithmetic

o same standard of quality as +, X, /, va
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Correctly rounded elementary functions
o |EEE-754 floating-point single or double-precision

@ Elementary functions : sin, cos, exp, log, implemented in the
“standard mathematical library” (1ibm)

o Correctly rounded : As perfect as can be, considering the finite
nature of floating-point arithmetic

o same standard of quality as +, X, /, va
@ Now recommended by the IEEE754-2008 standard,

but long considered too expensive
because of the Table Maker's Dilemma
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o Finite-precision algorithm for evaluating f(x)
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o Finite-precision algorithm for evaluating f(x)

@ Approximation + rounding errors — overall error bound €.
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o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.

e What we compute : y such that f(x) € [y — &,y + |

yxe
: | : | : | : | »
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o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.
e What we compute : y such that f(x) € [y — &,y + ]

yxe
: | \\I | | | | | »
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o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.
e What we compute : y such that f(x) € [y — &,y + ]

y%ﬁe y':_|te
: | | | | | | >

Dilemma if this interval contains a midpoint between two FP numbers
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o Finite-precision algorithm for evaluating f(x)
@ Approximation + rounding errors — overall error bound €.
e What we compute : y such that f(x) € [y — &,y + ]

yte y*te

| | T\: | :A: | -

Dilemma if this interval contains a midpoint between two FP numbers
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LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

* Toaoer
2 S il oocen yca000,36ksE 0

3 | e toec03

& | asetonongors Teoceg

5| aestamoes, Teomes | oesosaiziynd F
& | oartrpnprs A o oyozonfogity

7| caseesen awossr | eeseseigess

8 | oesbotons so0och | oyomoog,gzsany

9 | cwsiiishd Bosocg | oyemons,gobezg

1 | oopapasiims Tocooot | eyo00me,oq34ag

12 | corpiiades ssaoosa | eassencaaisy

15| oghiiint zococog | 00000013028,

1 | ouarniorsss el Rt

15 | omboniirges B wooocos | a,e000m,a1714 6
16 | oaepingstisg 2000068 | 600000, 260578

7 o5a3044,89213,8 xeomecy | gy00000,3

B | oassaniserio focaocd | 0,00000,34743,4

1 | sty om0y | optenipotsy

tor | sopsnnmank 10000008 | 6,00000,00414,3

w2 | oputdopizizys Toocdecd | o 00eecolilys

103 1383, 7azgr,t 10005053 | 0,000,013,

1o | coronmione Toosaoeg | o,c00m,00737,3

105 | speaitdsasgenr £ Tosasess | o00000,carzr,g A
106 | meanosiegng soaccens | erosincader,

107 | opigitizratie tococcer | gyueese,egage,

108 | eesishy seaecoel | opomooioifrng

w09 | opsraGi roocsoog | o,z0000,73908,6

Rl B ke zoscooeer | 6000000045,

o2 | opeentspriisg 08000802 | o,00000,00084,9

o03 | ooeszegiing do0000003 | a0650,00110,3

T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7

1o | ecatgfestn B otcesaos | o00mmm,conrzr T
1026 | ayoeapgaglona Frs——y Y ol

zoo7 | 00010894708, 5 osowco07 | e0000m,eozeqe

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

sy | oio03bnicia 1coceecey | eymmces,oa19ns

100 | 004,337, Teouceceon | ococsococed

toot | 00000888503, T Tacosooeod | ¢jo0csacocofy

saca3 | eemorn,east, T 3 | syessseyocs,e

Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.

s000f | omeornzoeang E prm— e
xescd | oj0008,04985,5 Tonooenon | essecagssait

10007 | cj00080,3%57,8 Toccavoeoy | ejuenne,oueiog

1030 | o 0003472506, Zeaunsacod | 5050000034,

10009 | oyo00posipsg Toss000c09 | ojpe0c0,00039,1
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LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

* Toaoer
2 S il oocen yca000,36ksE 0

3| ewrmuani 00003

& | asetonongors Tocoog

5| aestamoes, Teomes | oesosaiziynd F
& | oarbrsuarps A e Pstongin -4

7| cbaesopen awossr | eeseseigess

8 | oesbotons sococh | mymoss,gzsany

9 | cwsiiishd Bosocg | oyemons,gobezg

1 | oopapasiims Tocooot | eyo00me,oq34ag

= o,07918,12460,5 Fooveod #ypo0e0,085ls,g

15| oghiiint zococog | 00000013028,

1| ouanieses el Rt

15 | ezbopizpes B ooocos | o,00m00,217147 G
16 | oaepingstisg 2000068 | 600000, 260578

7 o5a3044,89213,8 xeomecy | gy00000,3

B | oassaniserio foooooB | 0,00000,34743,4

19 | srrlenisengs Tecacey | eyeeene,igolyy

tor | sopsnnmank 10000008 | 6,00000,00414,3

w2 | opetboiring Tooosood | oj0000e,c08eky

103 1283,72247,1 10005053 | 0,000,013,

1o | coronmione 1ooveoog | o,c0000,01737,2

105 | speaitdsasgenr £ Tosasess | o00000,carzr,g A
106 | meanosiegng soaccens | erosincader,

107 | opigitizratie tococcer | gyueese,egage,

108 | eesishy seaecoel | opomooioifrng

109 | oesrASigrnd so0oc00g | o,s00m0,039ck,6

Rl B ke zoscooeer | 6000000045,

o0z | 000086773853 08000802 | o,00000,00084,9

o03 | ooeszegiing om000603 | veao,00n10

T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7

1o | ecatgfestn B otcesaos | o00mmm,conrzr T
1026 | ayoeapgaglona Frs——y Y ol

zoo7 | 00010894708, 5 osowco07 | e0000m,eozeqe

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

100y | eco3bg,idhag Io00s0009 | £,0u620,00395,3.

200t | oj00004,34272,8 [y P—

xo002 | e,o000b68508, T Tacosooeod | ¢jo0csacocofy

ace3 | wovor3,eastd, T 3 | o,00000,080T3,0

Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.

1000 | omeoaLzeaang B frsm—— e
xescd | oj0008,04985,5 oty p———4

10007 | cj00080,3%57,8 Toccavoeoy | ejuenne,oueiog

1030 | o 0003472506, Tosoescod | oy0ca00,0004,7

10009 | oyooniposiyng Tossococag | opc0seye00gg,
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LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

T Tt | e
2 D el 00002 o0a060,30858,0 . .
3 477G 135472 1eec03 i

| |z | St @ | have an approximation scheme that
5 \Gals7,e0063,4 . oemanirins F . ..
K 778T5, 13503,8 A a00o oy05003,80568,

g | = | provides 14 digits
8 | csessboting socscl | moeooggzsanyy

9 | eorpearsnt Tososy | eseenguarg

5 | oopspattins tocoset | oye00n0,01ing

2| oersifaao,s toooeed | e0000,0888 59

5| orsgai soc000p | o co00m, 13028,

I i Bosacaq | ey00908,1737E,7

is | obop,tzrged B rococog | o cesnmairigs G

16 | apnsline 1006068 | oya0000,3807,8

sz | omseantss 1000007 | g,08005,5

B | oassaniserio focaocd | 0,00000,34743,4

1 | sarberssens so0acsy | eyvecoeysgetig

wr | sepsnnzang seossect | 6,00000,00814,3

w2 | opeltncizig Teosdocd | ¢ ooceyeekibys

toy | 9prByrazer,y Tesos00] | o,00000,08302,9

Iog ©,01703,33393,% Tooguocg. ©,00000,01737,3

105 | speaitdsasgenr £ Tosasess | o00000,carzr,g A

105 | messaestigng ros00ess | craseas,caien,

107 | o0k i709 sosoncoy | o ocsccsogn,t

108 | oes34237550 easoscd | o 00000034744

[ P tooceony | o,c00em,u3ek,6

Rl B ke zoscooeer | 6000000045,

P R ] Toscooeez | oyonomoiiy

1e03 | ,00430,09330,2 aeveosse3 | oyooces,eendo}

T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7

toof | oj0e226,56615,6 D Tot00s005 | v,00em0,z0217,1 T

1026 | ayoeapgaglona Frs——y Y ol

1007 | ao0gcpgror,s sescoscey | eomeneosere

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

100y | eco3bg,idhag Iooce0ceg | ,00600,0039%,3.

xesot | moasetuiara,d I

toost | 000004808, T Tacossceod | o,coccncocely

sae3 | eyoecroast,x 3 | manonctro

Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.

1000 | oecatroaang B Frmaam— oyeoazt g K,

xamt | oymonsoqphs Sovosesond | eiecncsoncait

10007 | eroostasissr Toosaooosy | o pemcocuezo

1oa0d | 500034, 72906, Toaosnceh | 0,00000,00034,7

10009 | oj000igosiyns Toosoc0ccg | oppoocepoedg,r
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LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

T BT o
3| = |k @ | have an approximation scheme that
3 4771313547, 10e003 £,90081, 3

+ '-:;;:WN!J Tocoog | o,00000,78714 ave pp

5 iyr,00og, Towoy | mescenizigns F . ..

H 781, 137038 A 300006 oy0candog ity

6 |lSEit = | provides 14 digits
5 | oaehastiny froox S eesp i

PR Py ey Tcsy | opeecongoBirg

i | sopspatins toowat | emonmsgsiag

12| sorsibanso,s oooesr | o0000,088i5,9 ° or,

3 ©,X1394,33523,1 Tocooo) ©,00000,13028,3

1 | o Boarss [remeri Deiicntmnyd = | og(x) =+ 10 14
15 | orzfop,zrp06 B rooncos | o,e00mat7i4 G y = g
A oo Sl Bt

w7 | st ol o

B | ousanterne o000 | 000003474304

g e it ot Boiinise

tor | oonsmuzand Ieotaool | 60000000414,

w2 | opotioiring Toocsod | 0,000,008k,

103 | oeatnrazns Tosessss | ojeaonojony

wg | oerrenmmse xo00000g | g,00m00,01737,2

105 opaitgaggenr € Tesasess oy00000,c2171,5 £

18 202530, 86528 Toscoeel | ¢ 00090,02605,8

o7 002938, 57776, Tooooco7 o,0e008,e3045,1

108 ©503342,37554n5 Bzaccced 6,00000,08474,4

109 | opmdigrng Yoaseooy | esomse,nageh

001 | cusonttgorrtat P

il B sictid ool Denine

1005 | Goeize,osIIn o0200003 | szvesojeetze

2004 | opor7z37Iatx Ioeooceog | oyotoce,canzs,?

faof | oyocatsantng B eseosacs | o ovsescortry T

106 | oom2gp 98072 osccases | o A

1007 | ©,00303,0470f,5 Te000c007 | 0,00008,0030,8

too$ | @,00346,05331,1 6600068 | o,00000,00347,4

aocy | oy00389,0i062,4 100000009 | #,00000,00390,5

200t | oj00004,34272,8 Teouceceon | ococsococed

Koot | wyo00nd,68fas,T Tacosacee | 600000000087

taced | woeenneastl,n 3 | o,00000,080T3,0

Tocog | yecorr,iddiosd seacooceag. | 000000000174

Socsf | sywetatgeatny B Joausossef ciovaatg X,

k| ey Tovononont | ety

o007 | ei00010,3%597 8 Towoaneces | om0, c0edog

1030l | o,00034,72986,9 Teaawoaod | 0,06800,00034,7

10009 | oyo00posipsg Toss000c09 | ojpe0c0,00039,1
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LOGARITHMICA,

Tabuks iwoestioni Logaritbmerassiafircicns.

T o Toaoor | oyomesniian
2 | sersagsnssg xoocaz | 000030858 0
3 AP, 1eec03 i
& | asetonongors Toocoq | 00008757143
5 | astamecora o I o o F
& | oartrpnprs A Toooh | oyo0002,6opdt

7| cbaesopen aemsey | aeeses,eiggs, s
] ge10Bg98ey,9 soouck ©,0003,47428,7
9 | cwsiiishd Bosocg | oyemons,gobezg
1 | oopapasiims Tocooot | eyo00me,oq34ag
12| sorsibanso,s ssaoosa | eassencaaisy
15| oghiiint zococog | 00000013028,
P 5 el Rt
15 | ezbopizpes B ooocos | o,00m00,217147 G
1 15,39025,6 2008008 | &,00000,2d057,6
7 304892118 prosscei Pessing

B | oassaniserio foooooB | 0,00000,34743,4
19 | srrlenisengs Tecacey | eyeeene,igolyy
tor | sopsnnmank 10000008 | 6,00000,00414,3
o o,01717,6 Tooosood | oj0000e,c08eky
103 1283,72247,1 Teo0ses3 | ojccomm,o1geny
1o | coronmione o00s00g | o,0000m,01737,2
o5 | epesithgasgenr € Tosasess | o00000,carzr,g A
106 | meanosiegng sesccens | ciosec,caden,8
107 | opigitizratie tososear | oyocec,cgage,t
108 | eesishy seaecoel | opomooioifrng
109 | oei7AnGTY Foocwoog | ¢,c000m,5350E,6
x| opoemiderri® P
002 | opentt ging Tosooosea | o,00000,000859
o03 | ooeszegiing om000603 | veao,00n10
T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7
saog | mye0atd,i otcesaos | o00mmm,conrzr T
1056 | aeappgiona Frossnely i
zoo7 | 00010894708, 5 ayosa0n,eogep,e
too$ | @,00346,05331,1 6600068 | o,00000,00347,4
100y | eco3bg,idhag Io00s0009 | £,0u620,00395,3.
raeex 3 Teoncecoon | ococso o003
10052 805, s o,00008,7
Soon3 | wemos,0antd, 1 1ososacee3 | e oetseoreTsie
Tocod | 0,00017,36830,6 1000000004 | 0,05006,06017,4.
1000 | omeoaLzeaang B frsm—— e
xescd | oj0008,04985,5 oty p———4
10007 | ,00080,38957,8 Toccavoeoy | ejuenne,oueiog
1030 | o 0003472506, Tosoescod | oy0ca00,0004,7
10009 | oyooniposiyng Tossococag | opc0seye00gg,

Florent de Dinechin, projet AriC (ex-Arénaire)

* @ | want 12 significant digits

@ | have an approximation scheme that
provides 14 digits

@ or,
y = log(x) £ 1071

@ "“Usually” that’s enough to round

X, x0000000xxx 17 £ 10714

<
Il

y = X, xxx000000xx83 + 10714
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LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

= | e
P i e P o |h n roximation scheme that
3 4771313547, Toeced £,90081, 3
& '-:;;:WN!J Tosoog o,00001, m,I;F ave a app [©
5 a,65hen,000 6,4 Toases ojemann, 1714, . ..
g |imga = &= provides 14 digits
) oga308,99865,9 Toc0cB
9 P ETosA Rococy.
S Rt .
ol st i = @ or,
3 ©,113p4,33523,1 Tocooo) _ 14
s == _
ol Y = e y = log(x) £ 10
3 |22 = =
P R sooson | ey0azeny
B mr‘r;y;rz;.; :—ms n,mﬂu,;g;,‘
3 2527875, ya! daan ] wyeusos,igole,3 " 1" 1
o5 || ommeemn A @ “Usually” that's enough to round
w2 | opobsoerziz,s Toootecd | ,00000,00868,6
oy | opmsnzanz Tesesse3 | o)comonyonjery
o4 nﬂm;ﬁ:vi;: o :wvvw: omentrna 14
= SEE = s -~
o | s el o _ OO
= || = (S Y = X, XXXXX: 17 £ 10
108 | ee3UnITSThS easoscd | o 00000034744
109 ©RIT4E4979xE eoxcog | o,ze000,03908,6
Toex | ouoooqtdorrant zoncosear | oesten,cengsg _14
|| =g T | _
el Bl = |==3 ¥ = X, x000000xxxx83 £ 10
T00g | opu1z3,37Iaty Tovaoceod | 0,02000,00873,7
ta0f | o,00216,666156 B FRTIE ) e 3
i | s ovocases | oiosennesai
| s e e .
ot | Sgarnc e Y @ Dilemma when
aocy | oy00389,0i062,4 Ioocs0seg | £,00005,00395,9
xeaor | os0004,34372,8 el P——
o002 | 00008, 68502,T Tacosaoead | o,00000,0000,7
saces | mpomernoasth.s psosssonny tingsteyd _ 0 :|: 1 0_14
| == =R ¥ = X, X0000000xxxx 5
1oosf | eeetalyeady B Eseosessef | oenco,cooat,y K,
Xosok | o00026,04985,5 [ESm—— p————
o507 | ©,00580,1%97,8 Toceacecey | emonco,o0030g
00l | ,00034,72586,9 Tosavescel | o,00500,00034,7
x000p | ojo0aig,ostgns zow0000ag | 0000080839,
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LOGARITHMICA, a5
Tabuks iwoestioni Logaritbmerassiafircicns.

@ | want 12 significant digits

= | e
z ©,301E2,99955,5 rovsoz oy00000,308 58,0 . .
3 4771313547, Toeced o000k, eadt 4
) | == | St @ | have an approximation scheme that
¢ | s = . .
7| = provides 14 digits
) oga308,99865,9 Tooock o 4287
9 R s ) Rocacy ©y0e003,90847,4
o ez vt | g
5 T e @ or,
3 ©,X1394,33523,1 Tocooo) 0000913028, _ 14
s == _
ol Y = e y = log(x) £ 10
3 ||EEES = =
7 | amsesntps prosscei Pessing
B Hﬁf‘f;;;‘;z;n; :_ﬂ’s “-"W":!gb‘
13 | earbrnieos eeoory | wgesdenigeld,y “ " ]
o || o S P @ “Usually” that's enough to round
w2 | opobsoerziz,s Teocteod | 000000008688
toy | 9prByrazer,y Teses0e3 | o,00000,08joz,9
o4 nﬂm;ﬁ:vi;: . :wvvw: ©,0000,00737,2 14
3 e = s _
Eoter = == _
o | Fosvell Ko ¥ = X, x0000000xx 17 £+ 10
108 | oes34237554 I2az0s08 | crocscosciirig
109 ©RIT4E4979xE eoxcog | o,ze000,03908,6
Toer | 0000434077458 T03000001 | ¢,00000,00043,4 —14
|| =g T | _
D= ===y ¥ = X, x000000xxxx83 £ 10
100g | opcIz33iatx Tovooeood | 0,02000,00373,7
toof | oj00236,506176 B Tetcosacs | 6,000m0,00217,1 T
126 a:!xn,m,: osceasod | 000000002806
| s e e .
Tt | sessiieriene = | @ Dilemma when
aocy | oy00389,0i062,4 Ioocs0seg | £,00005,00395,9
10005 | o0004,34272,8 el P——
= oo 14
=55 _
ey | s ¥ = X, xx000000xxx50 £+ 10
Socsf | sywetatgeatny B
CH
o507 | ©,00580,1%97,8
1oa0d | o,00034,72506,5
x000p | ojo0aig,ostgns zow0000ag | 0000080839,

The first table-makers rounded these cases randomly, and recorded them to
confound copiers.
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Ziv's onion peeling algorithm

1. Initialisation : ¢ = g1
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Ziv's onion peeling algorithm
1. Initialisation : ¢ = g1
2. Compute y such that f(x) =y +e¢
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Ziv's onion peeling algorithm
1. Initialisation : ¢ = g1
2. Compute y such that f(x) =y +¢
3. Does y =+ € contain the middle point between two FP numbers?
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Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?
o If no, return RN(y)
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Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

15



Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma!
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Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma! Reduce €, and go back to 2
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Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma! Reduce €, and go back to 2
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Ziv's onion peeling algorithm
1. Initialisation : € = €1
2. Compute y such that f(x) =y +e¢

3. Does y =+ € contain the middle point between two FP numbers?

o If no, return RN(y)
o If yes,dilemma! Reduce €, and go back to 2

It is a while loop... we have to show it terminates, a topic in itself.
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When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough
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When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J
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When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J

For each step, we want to prove a tight bound Z such that
|F (x) — f(x)
f(x)

| <%
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When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J

For each step, we want to prove a tight bound Z such that
|F (x) — f(x)
f(x)

@ Overestimating &, degrades T, ! (common wisdom)

| <%
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When we know that the loop terminates...

CRLibm : 2-step approximation process

o first step fast but accurate to z;
sometimes not accurate enough

o (rarely) second step slower but always accurate enough

Tavg =T+ P2T2 J

For each step, we want to prove a tight bound Z such that
|F (x) = f(x)
f(x)
@ Overestimating £, degrades T, ! (common wisdom)
@ Overestimating 1 degrades p; !

| <%

y:|:€1 y:|:€1
! ! Pil |¢/::\;| -
T T T 7 T
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First correctly rounded elementary function in CRLibm

@ exp by David Defour
@ worst-case time T =~ 10,000 cycles

@ complex, hand-written proof
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First correctly rounded elementary function in CRLibm
@ exp by David Defour
@ worst-case time T =~ 10,000 cycles

@ complex, hand-written proof
@ duration : a Ph.D. thesis (2002)
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First correctly rounded elementary function in CRLibm

@ exp by David Defour

@ worst-case time T =~ 10,000 cycles
@ complex, hand-written proof

@ duration : a Ph.D. thesis (2002)

Conclusion was :

o performance and memory consumption of CR elem function is OK
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First correctly rounded elementary function in CRLibm

@ exp by David Defour

@ worst-case time T =~ 10,000 cycles
@ complex, hand-written proof

@ duration : a Ph.D. thesis (2002)

Conclusion was :
o performance and memory consumption of CR elem function is OK

o problem now is : performance and coffee consumption of the programmer
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C. Lauter at the end of his PhD,

@ development time for sinpi, cospi, tanpi :
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C. Lauter at the end of his PhD,

@ development time for sinpi, cospi, tanpi : 2 days

@ worst-case time T = 1,000 cycles
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C. Lauter at the end of his PhD,

@ development time for sinpi, cospi, tanpi : 2 days

@ worst-case time T = 1,000 cycles

(but as a result of three more PhDs)
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Tavg =T+ p2T2

Reduction of Ty by learning from Intel

@ Reduction of py by automating the computation of tight £;
(p2 is proportional to 1)

Reduction of T, by computing just right

Reduction of coffee consumption by automating the whole thing
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Tavg =T+ p2T2

Reduction of Ty by learning from Intel

@ Reduction of py by automating the computation of tight £;
(p2 is proportional to 1)

Reduction of T, by computing just right

@ Reduction of coffee consumption by automating the whole thing

The MetalLibm vision

Automate libm expertise so that a new, correct libm can be written for
a new processor/context in minutes instead of months.
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Formal proof

of floating-point code
for the masses

Formal proof of floating-point code for the masses
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3

yh2 = yhxyh; \
ts = yh2 % (s3.d + yh2x*(s5.d + yh2xs7.d)); \
Add12{*psh *psl,  yh, yl+tsxyh); \

Upon entering DoSinZero, we have in yj, + y; an approximation to the ideal reduced value y = x — k% with a relative

accuracy €argred :
™ ~
oty =(x— kizss)(l + €argred) = J(1 + €argred) (1)

with, depending on the quadrant, sin(§) = = sin(x) or sin(§) = =4 cos(x) and similarly for cos(y). This just means that
is the ideal, errorless reduced value.

In the following we will assume we are in the case sin(§) = sin(x), (the proof is identical in the other cases), therefore the
relative error that we need to compute is

(*psh + =psl) (*psh + *psl)
Esinkzero = — 1= -1 (2)
sin(x) sin(9)

One may remark that we almost have the same code as we have for computing the sine of a small argument (without range
reduction). The difference is that we have as input a double-double yh + y1, which is itself an inexact term.

At Line 4, the error of neglecting y; and the rounding error in the multiplication each amount to half an ulp :

yh2 = yh?(1 + € _53), with yh = (yh + y1)(1 + € _53) = J(1 + argrea)(1 + £_53)

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm
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Therefore )
yh2 = §°(1 + eyn2)

with 2 3
Eyn2 = (1 + Targred) (1 +8-53)" — 1

Line 5 is a standard Horner evaluation. Its approximation error is defined by :

oy sin(@) — ¥
Pes(9) = T(l + €approxts)

This error is computed in Maple as previously, only the interval changes :

xPys(x) _

Eapp roxts —

sin(x) — x H i

We also compute €}, ornerts: the bound on the relative error due to rounding in the Horner evaluation thanks to the

compute_horner_rounding_error procedure. This time, this procedure takes into account the relative error carried by yh2,

which is Eyna computed above. We thus get the total relative error on ts :

. sin(9) — ¢
ts = Pys(9)(1 + €hornerts) = -

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetalLibm
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The final Add12 is exact. Therefore the overall relative error is :

Esinkzero

Let us define for now

Then we have

Esinkzero

Using (1) and (5) we get :

P+ cargred) ¥ Z2E=F (14 copproxte)(1 + hornerts)(1 + € _53) + Y1+ ¥h + Saddsin

((h®ts) Byl) +yb
sin(9)
(h@ts+yl)1+e_s3)+yb
sin(9)

yh®ts+yl+yh + (yh® ts +yl).e_s3

sin(7)

Saddsin = (Yh ® ts +yl).e 53

(yh+ y1)ts(1+e_53)° + y1 + yh + Saddsin

sin(9)

-1

Esinkzero

To lighten notations, let us define

2
esin1 = (1 + €approxts)(1 + €hornerts)(1 + €_53)° — 1

Florent de Dinechin, projet AriC (ex-Arénaire)
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We get

(sin(9) — 9)(1 + €gin1) + J(1 + €argred) + Jaddsin — sin(9)

-
sinkzero sin(f/)
~ (sin(¥) = 9)-€sin1 + V-Cargred + Saddsin
sin(9)
Using the following bound :
—53 3
[0adasin| = (/A ® ts +y1).e_s3] < 2777 x |y[7/3 (8)

we may compute the value of g, kzero as an infinite norm under Maple. We get an error smaller than 2767,
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Two years of experience showed that nobody (including myself) should
trust such a proof
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Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).
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Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
@ takes a set of C files,

@ parses them,

@ and outputs “The overall error of the computation is ...".
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Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
@ takes a set of C files,

@ parses them,

@ and outputs “The overall error of the computation is ...".

It's hopeless, of course :
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Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
o takes a set of C files,
@ parses them,
@ and outputs “The overall error of the computation is ...".

It's hopeless, of course :
@ Where, in your code, can you read what it is supposed to compute ?
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Two years of experience showed that nobody (including myself) should
trust such a proof (and that nobody reads it anyway).

We wish we had an automatic tool that
o takes a set of C files,
@ parses them,
@ and outputs “The overall error of the computation is ...".

It's hopeless, of course :
@ Where, in your code, can you read what it is supposed to compute ?

@ Most of the knowledge used to build the code is not in the code
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but... automatic proof assistants are not there yet
@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...
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but... automatic proof assistants are not there yet
@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...

@ Proving Sterbenz Lemma (one operation) is worth a full paper.
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but... automatic proof assistants are not there yet

@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...

@ Proving Sterbenz Lemma (one operation) is worth a full paper.

@ Here is the typical crlibm code for which | want the relative error :

yh2 = yh*yh ;

ts = yh2 * (s3 + yh2x*(sb + yh2%*s7));

tc = yh2 * (c2 + yh2*x(c4 + yh2*c6 ));

Mull2 (&cahyh_h ,&cahyh_1, cah, yh);

Add12 (thi, tlo, sah,cahyh_h);

tlo = tc*sah+(ts*cahyh_h+(sal+(tlo+(cahyh_1+(cal*yh +
cah*yl))))) ;

7 Add12 (*psh,*psl, thi, tlo);

o U W N
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but... automatic proof assistants are not there yet

@ Research on formal proofs for arithmetic

o John Harrison at Intel (HOL light)
o Marc Daumas and Sylvie Boldo in the Arénaire project (Coq, PVS)
o And many others...

@ Proving Sterbenz Lemma (one operation) is worth a full paper.

@ Here is the typical crlibm code for which | want the relative error :

yh2 = yh*yh ;

ts = yh2 * (s3 + yh2x*(sb + yh2%*s7));

tc = yh2 * (c2 + yh2*x(c4 + yh2*c6 ));

Mull2 (&cahyh_h ,&cahyh_1, cah, yh);

Add12 (thi, tlo, sah,cahyh_h);

tlo = tc*sah+(ts*cahyh_h+(sal+(tlo+(cahyh_1+(cal*yh +
cah*yl))))) ;

7 Add12 (*psh,*psl, thi, tlo);

o U W N

. and it changes all the time as we optimize it.
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1] s3 = -0.16666666666666665741480812812369549646973609924;
2| sb = 8.33333333262892793358300735917509882710874081e-3;
3| 87 = -1.98400103113668426196153360407947729981970042e-4;
4

51 y2 =y *y;

6| ts = y2 *x (83 + y2x(sb + y2%s7));

7| r =y + y*xts

@ evaluation of sine as an odd polynomial

p(y) =y + s3y° + ssy® + s7y”
(think Taylor for now)

o reparenthesized as p(y) = y + y?t(y?) to save operations

@ y + y*ts is more accurate than y*(1+ts) in floating-point,
do you see why?
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y2 =y *y;
ts = y2 x (83 + y2x(sb + y2xs7));
r =y + yxts

@ This polynomial is an approximation to sin(y)
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2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

This polynomial is an approximation to sin(y)

Oops, | wrote its coefficients in decimal !
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2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)
@ Oops, | wrote its coefficients in decimal!
o

y is not the ideal reduced argument Y (such that x = Y + kg5
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y2 =y *y;
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts
@ This polynomial is an approximation to sin(y)
@ Oops, | wrote its coefficients in decimal!
@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?
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2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)

@ Oops, | wrote its coefficients in decimal !

@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?

@ y2 already stacks two errors. We evaluate ts out of it
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2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)

@ Oops, | wrote its coefficients in decimal !

@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?

@ y2 already stacks two errors. We evaluate ts out of it

@ There is a rounding error hidden in each operation.
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2 =y * Vs
ts = y2 * (83 + y2*(sb + y2*s7));
r =y + yxts

@ This polynomial is an approximation to sin(y)

@ Oops, | wrote its coefficients in decimal !

@ y is not the ideal reduced argument Y (such that x = Y + kg5
@ We have a rounding error in computing y?

@ y2 already stacks two errors. We evaluate ts out of it

@ There is a rounding error hidden in each operation.

How many correct bits at the end ?
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y*(1+ts) is a bit less accurate than y + y*ts in floating-point
That's because |t| < 27  because |y| < 277 (not in the code)
1 I I y |
+ I t | + I y*t |
= | 1+t | = | yRy*E ]
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Written by Guillaume Melquiond, Gappa is a tool that

@ takes an input that closely matches your C file,
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Written by Guillaume Melquiond, Gappa is a tool that
@ takes an input that closely matches your C file,

@ forces you to express what this code is supposed to compute
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Written by Guillaume Melquiond, Gappa is a tool that
@ takes an input that closely matches your C file,
@ forces you to express what this code is supposed to compute

@ ... and some numerical property to prove (expressed in terms of
intervals)
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Written by Guillaume Melquiond, Gappa is a tool that
@ takes an input that closely matches your C file,
@ forces you to express what this code is supposed to compute

@ ... and some numerical property to prove (expressed in terms of
intervals)

@ and eventually outputs a proof of this property suitable for
checking by Coq or HOL Light

Try it, it's free software
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Using a machine's finite precision, manipulate reals safely
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Using a machine's finite precision, manipulate reals safely

@ represent a real x in a machine as an interval [x;, x,]
guaranteed to enclose it

o x; and x, are finitely representable numbers (e.g. floating-point)
o Example : 7 represented by [3.14,3.15]

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

31



Using a machine's finite precision, manipulate reals safely

@ represent a real x in a machine as an interval [x;, x,]
guaranteed to enclose it

o x; and x, are finitely representable numbers (e.g. floating-point)
o Example : 7 represented by [3.14,3.15]

@ Operation @ on the reals — its interval counterpart

Guarantees based on the inclusion property
Ix @ I, must be an interval I, such that

Vxel,Vyel, x®yel
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Using a machine's finite precision, manipulate reals safely

@ represent a real x in a machine as an interval [x;, x,]
guaranteed to enclose it

o x; and x, are finitely representable numbers (e.g. floating-point)
o Example : 7 represented by [3.14,3.15]

@ Operation @ on the reals — its interval counterpart

Guarantees based on the inclusion property
Ix @ I, must be an interval I, such that

Vxel,Vyel, x®yel

@ Example : interval addition using floating-point arithmetic
[a, b] + [c,d] is [RoundDown(a+ c), RoundUp(b + d)]

o (multiplication, division similar but more complex)
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# Convention: uncapitalized variables match the variables in the C code.
y = float<ieee_64,ne>(dummy); # y is a double

#————————————— Transcription of the C code
s3 float<ieee_64,ne>= -1.6666666666666665741480812812369549646974e-01;

sb float<ieee_64,ne>= 8.3333333333333332176851016015461937058717e-03;
s7 float<ieee_64,ne>= -1.9841269841269841252631711547849135968136e-04;

y2 float<ieee_64,ne>= y * y;
ts float<ieee_64,ne>= y2 * (s3 + y2*(s5 + y2%s7));
r float<ieee_64,ne>= y + y*ts;

Mathematical definition of what we are approximating

# (The same expression as in the code, but without rounding errors)
Y2 = Y x Y;
Ts = Y2 * (s3 + Y2*(s5 + Y2%s7));

R =Y + Y*Ts;

The theorem to prove

e

# Hypotheses (numerical values computed by Sollya)
Y in [-6.15e-3, 6.15e-3] # Pi/512, rounded up
/Ny - Y in [-2.53e-23, 2.53e-23] # max abs. range reduction error
/\ R-8inY in [-3.55e-23, 3.55e-23] # approximation error (this defines SinY)
->

r-SinY in 7 # A goal: absolute error
/\
(r-8inY)/SinY in ? # Another goal: relative error
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$ gappa < tutoriall.gappa

Results for Y in [-0.00615, 0.00615] and y - Y in [-2.53e-23, 2.53
r - SinY in [-27(-60.9998), 27(-60.9998)]

Warning: some enclosures were not satisfied.

Missing (r - SinY) / SinY

$

@ A tight bound on the absolute error

@ No bound for the relative error
o of course, | have to prove that SinY cannot come close to zero
o that's formal proof for you

We should now try gappa -Bcoq
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@ Gappa tries to associate an interval with each expression.

@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
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o Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.

o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
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@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)
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@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)
Add user-defined rewriting rules when Gappa is stuck
o That’s how you explain your floating-point tricks to the tool
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@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)
@ Add user-defined rewriting rules when Gappa is stuck
o That’s how you explain your floating-point tricks to the tool
@ Internally, construction of a proof graph

o Branches are cut when a shorter path or a better bound are found.
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@ Gappa tries to associate an interval with each expression.
@ Interval arithmetic is used to combine these intervals, until the goal
is reached.
o Naively, it would lead to interval bloat. Here for instance
o r~SinY € [-277,277]
o s0 1T — SinY € [-27%,27%] using naive IA.
o Gappa uses rewriting of expressions
As r = float64ne(E);
try and use the rule
float64ne(E)) - SinY -> (float64ne(E) - E) + (E - SinY) ;
(hopefully now the sum of two smaller intervals)
@ Add user-defined rewriting rules when Gappa is stuck
o That’s how you explain your floating-point tricks to the tool
@ Internally, construction of a proof graph

o Branches are cut when a shorter path or a better bound are found.
o The final graph will be used to generate the formal proof.
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@ Predefined set of rewriting rules :
o float64ne(a)- b ->(float64ne(a)- a)+ (a - b);
o ...

@ Support library of theorems (with their Coq proofs) :
o Theorems giving the errors when rounding

» a in [...] ->(float64ne(a)-a)/a in [...]
Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)
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@ Predefined set of rewriting rules :
o float64ne(a)- b ->(float64ne(a)- a)+ (a - b);
o ...

@ Support library of theorems (with their Coq proofs) :
o Theorems giving the errors when rounding

» a in [...] ->(float64ne(a)-a)/a in [...]
Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)

o Classical theorems like Sterbenz Lemma
o ...
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@ Predefined set of rewriting rules :
o float64ne(a)- b ->(float64ne(a)- a)+ (a - b);
o ...

@ Support library of theorems (with their Coq proofs) :
o Theorems giving the errors when rounding

» a in [...] ->(float64ne(a)-a)/a in [...]
Note how this takes care of dangerous cases (subnormal numbers,
over/underflows...)

o Classical theorems like Sterbenz Lemma
o ...

To obtain a good relative error, Gappa will demand to prove that y may
not be subnormal...
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r1l float<ieee_64 ,ne>= y*(1+ts);
r2 float<ieee_64,ne>= y+y*ts;

yts float<ieee_64,ne>= y*ts; # for lighter hints

Mathematical definition of what we are approximating

# (The same expression as in the code, but without rounding errors)
Y2 = y*y;

Ts = Y2 * (s3 + Y2*(sb + Y2%s7));

Poly = y*(1+Ts);

ES The theorem to prove

{

# Hypotheses (numerical values computed by Sollya)
y in [1b-200, 6.15e-3] # left: Kahan/Douglas algorithm. Right: Pi/512, rounded up
->

ri-/Poly in ? # relative error
r2-/Poly in 7 # relative error
# Loads of rewriting hints needed for r2

y+yts -> y* ( (1+ts) + tsx((yts-y*ts) / (yxts))) {y*ts <> 0};
(r2-Poly)/Poly -> ((r2 - (y+yts))/(y+yts) + 1) * ( ((y+yts)/y) / (1+Ts)) -1 {1+Ts
<>0};
(y+yts)/y ->
# (ytyxts—yxtstyts) /y;
# 1+ts + (yts—ys*ts)/y;
1+ts + ts*( (yts-y*ts)/(y*ts) ) {y*ts <> 0};
((y+yts)/y) / (1+Ts) -> (1+ts)/(1+Ts) + ts*( (yts-y*ts)/(y*xts) )/(1+Ts) {1+Ts<>0};
(1+ts) /(1+Ts) -> 1 + (Ts*x((ts-Ts)/Ts))/(1+Ts) {1+Ts<>0};
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$ gappa < tutorial2.gappa

Results for y in [7.88861e-31, 0.00615]:
(r1 - Poly) / Poly in [-27(-52.415), 27(-52.415)]
(r2 - Poly) / Poly in [-27(-52.9777), 27(-52.9339)]

$
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o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)
o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it
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o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)
o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it

@ It is built upon very solid theoretical fundations
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o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)
o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it
@ It is built upon very solid theoretical fundations
@ What we have now is generators of code + Gappa proof
o The same RR work for large classes of generated codes.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm 38



o | probably failed to convey this, but...
Gappa is surprisingly easy to use.
(if you didn't understand my Gappa proof, you just don't
understand my C code)

o if you don't know where it is stuck, ask it (by adding goals)
o then add rewriting rules to help it

@ It is built upon very solid theoretical fundations
@ What we have now is generators of code + Gappa proof
o The same RR work for large classes of generated codes.

@ Also support for arbitrary-precision fixed-point.
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Other tools toward MetalLibm

Other tools toward MetalLibm
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Multiple Precision Floating-point correctly Rounded

MPFI : interval arithmetic on top of MPFR
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The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

@ multiple-precision, last-bit accurate evaluation of arbitrary
expressions

o apologizes each time it rounds something
o a demo?
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The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)

@ multiple-precision, last-bit accurate evaluation of arbitrary
expressions
o apologizes each time it rounds something
o ademo?
@ guaranteed infinite norm ||f(x)||~ even in degenerate cases

o ||f(x) — P(x)||so is a degenerate case...
o Gappa bounds the rounding errors, this bounds the approximation
error
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The Swiss Army Knife of the libm developer (Lauter, Chevillard, Joldes)
@ multiple-precision, last-bit accurate evaluation of arbitrary
expressions
o apologizes each time it rounds something
o ademo?
@ guaranteed infinite norm ||f(x)||~ even in degenerate cases

o ||f(x) — P(x)||so is a degenerate case...
o Gappa bounds the rounding errors, this bounds the approximation
error

@ Machine-efficient polynomial approximation
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In 1991, a Patriot missile failed to intercept a Scud, and 28 people were
killed.

@ The code worked with time increments of 0.1 s.

@ But 0.1 is not representable in binary.

@ In the 24-bit format used, the number stored was
0.099999904632568359375

@ The error was 0.0000000953.
@ After 100 hours = 360,000 seconds, time is wrong by 0.34s.
@ In 0.34s, a Scud moves 500m

(similar problems have been discovered in civilian air traffic control
systems, after near-miss incidents)

Test : which of the following increments should you use?
10 5 3 1 05 025 02 0125 01 J
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@ Remez' minimax algorithm finds the best polynomial approximation
over the reals
@ But we need polynomials with machine coefficients
o float, double, fixed-point, ...

@ Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

43



@ Remez' minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients
o float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

o this saves a few bits of accuracy
o especially relevant for small precisions (FPGAs)
o that’s how we get our polynomials
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@ Remez' minimax algorithm finds the best polynomial approximation
over the reals

But we need polynomials with machine coefficients
o float, double, fixed-point, ...

Rounding Remez coefficients does not provide the best polynomial
among polynomial with machine coefficients.

Sollya does (almost).

o this saves a few bits of accuracy
o especially relevant for small precisions (FPGAs)
o that’s how we get our polynomials

Nice number theory behind.
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@ Store a 2p-digit number y as two p-digit numbers y;, and y;

@ y=Yynt+y
@ exponent(y;) < exponent(y,) —p

| Vh | | Vi

Example

Decimal format, p = 3 digits,
3.14159 stored as y, = 3.14, y; = 1.59e¢ — 3

L
\/

A lot of litterature to compute efficiently on doubled-FP.
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Polynomial evaluation P(y) when y < 27k

2—P
| P )
koo
+ :‘_’I qy
+ o] ¥ ]
foemere e PR
For CRLibm

@ doubled-binary64 (106 bits) is not enough,
@ but triple-binary64 (159 bits) is overkill
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Add233 : add a double-FP to a triple-FP

Require: a, + ay is a double-double number and by + b, + by is a
triple-double number such that |by| <272 |ay], |ag] <2733 -ay|,
|bm| <277 - |ba|, |be| <27P - |bm).

Ensure: r, + ry, + r; is a triple-double number approximating
an+ag + bp+ by + by with a relative error given by the Theorem on next
slide.

(I’h7 1.'1) < Fast2Sum (a;,, bh)
(t2, t3) < Fast2Sum (ag, bm)
(tq, ts) < Fast2Sum (t1, tp)

ts < RN(t3 + by)

t7 < RN(ts + t5)

(fm, re) < Fast2Sum (tq, t7)

Bo and (B, measure the possible overlap of the significands of the inputs.
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Theorem (Result overlap and relative error of Add233 )

Under the conditions on previous slide, the values ry, rm,, and ry
returned by the algorithm satisfy

rh+ rm+re = ((an + a¢) + (bn + bm + b)) - (L +¢€),

where € is bounded by
el < 2 Pe=Pu=52 | 9=Fo—104 4 5—153

The values rp, and r; will not overlap at all, and the overlap of ry, and
rm will be bounded by
|rm| <277« [l
with
7 > min (45760 — 4,80+ By — 2)-
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@ See crlibm source and documentation for the operators themselves.

@ Manipulating these theorems by hand is painful : Lauter's metalibm
assembles such operators automatically for polynomial evaluation.
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Code generation for polynomial evaluation

@ explores different parallelizations of a polynomial on a VLIW
processor

@ generates code and Gappa proof of the evaluation error
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Code generation for polynomial evaluation

@ explores different parallelizations of a polynomial on a VLIW
processor

@ generates code and Gappa proof of the evaluation error

Used to generate the code for the division and square root of FLIP,
a Floating-Point Library for Integer Processors
(collaboration with ST Microelectronics)
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Conclusion

Florent de Dinechin, projet AriC (ex-Arénaire)

Conclusion

From CRLibm to MetaLibm

50



@ Are you able to express what your code is supposed to compute ?
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@ Are you able to express what your code is supposed to compute ?
If yes, we can help you sort out the gory floating-point issues.

Florent de Dinechin, projet AriC (ex-Arénaire) From CRLibm to MetaLibm

51



@ Are you able to express what your code is supposed to compute ?
If yes, we can help you sort out the gory floating-point issues.

o If you're computing accurately enough, you're probably computing
too accurately.
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Library ----=> developed using
Program —= links against
General-purpose libraries [ MPFR H MPFI ] [ FPLLL ]

Development tools

7 N e

~
’ N~ -

v _ =N -
, - N P
o S
User-space
tools and libraries

All these developments are free software.
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(1+x)
@ Two parameters

@ log

o k from 1 to 13, defines table size

o target accuracy, between 20 and 120 bits

@ 1203 implementations, all formally checked

z axis : timings in arbitrary units
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Computing just right for FPGAs

@ Finer granularity : never compute 1 bit that you don’t need
@ More qualitative freedom : build the operators you need
o A squarer, a multiplier by In(2), a divider by 3...

@ Compute more efficiently ?

http://flopoco.gforge.inria.fr/
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