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Terminology reminders 
Precision = Digits available to store a number 

(“32-bit” or “4 decimal”, for example) 
Accuracy = Number of valid digits in a result (“to 

three significant digits”, for example) 
ULP = Unit of Least Precision. 

Precision is not a goal. 
Precision is the means, accuracy is the en  
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The Problem 
Current floating-point math wastes energy, power, 

time, and storage, by using worst-case precision 
everywhere. 
Widespread issue, beyond just HPC; precision 

excess is prevalent in search, cloud, games, 
graphics, financial calculations, speech 
recognition… 
FP is hard to use because programming bugs and 

rounding errors look alike! 
Constraint: We must continue to support the IEEE 

standard. 
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Using 64-bit everywhere is 
speculation Is it enough? Is it too much? We’re guessing. 
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Benefits of efficient math reach 
across a wide range of 

applications 
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Source: Andrew Kormornicki, IBM 
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The Opportunity 
We can reduce bandwidth requirements by 

enabling safe use of reduced precision. 
Tools can help guarantee accurate calculations 

involving real numbers; make computers “self 
aware” of accuracy 
We can maintain the IEEE Standard legacy, but 

right-size the precision we use. 

Reduce power, get better answers, 
and improve performance, all at once. 
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When you don’t know accuracy 
(1)… 

Sleipner Oil Rig Collapse. Loss: $700 million. 

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html 
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When you don’t know accuracy 
(2)… 

Vancouver stock exchange index undervalued by 50% 

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html 
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When you don’t know accuracy 
(3)… 

2011: CERN faces need for 1.9x more memory 

Source of data: Andrezej Nowak, CERN 
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…and inaccuracy can really hurt 
Patriot missile accident killed 28 Americans. 

See http://www.fas.org/spp/starwars/gao/im92026.htm 
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Quick Tutorial on Rounding 
Error 

“0.1 second” in single precision isn’t exact. 
It’s 0.10000002384185791015625, rounded. Every addition will be a little bit off.  

As other speakers have said: 
(a + b) + c is NOT the same as 
a + (b + c) in floating-point math. 

a =  1.0 
b =  100000000. 
c = –100000000. 

(a + b) rounds down to = 100000000. Add c, get 0.0. 
(b + c) = 0 exactly, with no rounding. Add a, get 1.0. 

So floating point math fails algebra. 
Big headache for parallel programming. Bug, or rounding error? 

Accuracy-awareness solves this problem. 

Accumulating seconds, 0.1 at a time, for 100 hours, 
will be off by at least three minutes! 

Wrong bits 
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“Unbiased rounding” won’t save you 

 Rounding biases are not always statistically independent! 
 And at petaflops/sec, “creeping crud” accumulates fast. 

n = # of floating-point ops 

Statistical case ~ ±√n ULPS 
after n independent roundings 

Statistical case ~ ±√n ULPS 
after n independent roundings 
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IEEE-style floating point at any 
precision (via Mathematica) 

mbits = 8; 
imax = 2^mbits - 1; 
expobits = 3; 
fracbits = mbits - 1 - expobits; 
hidden = 2^fracbits; 
signmask = 2^(mbits - 1); 
fracmask = hidden - 1; 
expomask = (signmask - 1) - fracmask; 
sign[b_] := BitAnd[dbt, signmask]/signmask; 
expo[b_] := BitAnd[dbt, expomask]/hidden; 
frac[b_] := BitAnd[dbt, fracmask]; 
bias = 2^(expobits - 1) - 1; 
 
ftox[b_] := N[(-1)^sign[b] Which[ 
    expo[b] == 0, frac[b]*2^(1 - bias - fracbits), 
    expo[b] > 0, 2^(expo[b] - bias) (1 + frac[b]/hidden)]] 
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Denormalized floats aren’t ‘weird’ 
What’s weird is not using them. 
Using 8-bit floats to illustrate: 

With denormalized 
numbers. 

“Gradual underflow” 

Easier hardware? Not really! 
Clip to zero. 

GPUs do this. Why? 
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Sources of numerical inaccuracy 
• Machine-caused errors 

• Cumulative rounding (“creeping crud”) 
• Left-digit destruction (subtracting similar numbers) 
• Operations on values of very different magnitudes 

(catastrophic accuracy destruction; like,1016 + 3.14 
gives 1016.) 

• I/O; conversion of decimal to binary numbers and back 

• Programmer-caused errors 
• Naïve algorithms 
• Poor guarding of user input, e.g. sin(x) allowing x = 

10+300 

• Nature-caused errors (soft errors) 
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Miscellaneous Principles for Roundoff 
Control 

Don’t differentiate numerically. Find an integral 
formulation of the problem! 
Use high-precision accumulators; this may allow 

reduced-precision data stored in DRAM 
 If you need bitwise reproducibility for debugging, 

use parallel random number generators, and 
binary sum collapse even when summing on a 
single processor 
 Lean on high-quality library routines, even for 

simple things like dot products, instead of writing 
your own (side effect: improves maintainability of 
code)  
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“How do you know your answer is 
correct?” 

“(Laughter) “What do you mean?”(This is the 
most common response) 

“We used double precision.” 

“It’s the same answer we’ve always gotten.” 

“It’s the same answer others get.” 

“It agrees with special-case analytic 
answers.” 
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It’s unlikely a code uses the best 
precision 

• Too few bits gives unacceptable errors 
• Too many bits wastes memory, bandwidth, energy 
• 15 decimals everywhere to get 4 decimals in 

result? 

Source: http://mantawiki.sci.utah.edu/manta/index.php/Main_Page 

Percent of time bit determines ray tracing 

Precision  
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Excess precision burdens DRAM 
energy, which is improving too slowly 

Operation Approximate 
energy consumed 

today 
64-bit multiply-add 64 pJ 
Read/store register data 6 pJ 
Read 64 bits from DRAM 4200 pJ 
Read 32 bits from DRAM 2100 pJ 

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010 

Simply using single precision in DRAM instead of 
double saves as much energy as 30 on-chip floating-

point operations. 



21 
Intel Labs 

Energy savings from halving flop-width 
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Accuracy-Aware Debugging Ideas 
 Annotate FP code to track rounding history of each 

value. Initial values flagged as exact or inexact. 
 Attach “odometer” for how many adds, mults, divs, 

roots, etc. Triad operations inherit total histories of 
parents plus current operation. 
 Distinguish left-digit destruction (ldd) from rounding 

– 3.14159 – 3.14000 = 1.59×10–3 (left digit destruction) 

– 10000000 + 0.5 = 10000000 (rounding) 
 Halt options: relative error too high, absolute error 

too high, conditional test indeterminate. 
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Example: Quadratic Equation 
Programmer needs to solve ax2 + bx + c = 0 
Recalling elementary school math, naïvely uses 

r1, r2 = (–b ± (b2 – 4ac)1/2)/(2a) 
But (b2 – 4ac)1/2 might be very close to ±b, 

resulting in left-digit destruction for one root. 
 

Let’s try this for a = 3, b = 100, c = 2, 
and seven-decimal precision. 
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Operation trace 
t1=b*b b2   0.1000000 × 105 
t2=4*a 4a   0.1200000 × 102 
t2=t2*c 4ac   0.2400000 × 102 
t2=t1–t2 b2 – 4ac   0.9976000 × 104 
if t2≤0, then print Exit if solution is 
 “degenerate or degenerate or involves 
 non-real answer” imaginary numbers 
 stop 
end if  
t2=sqrt(t2) (b2–4ac)1/2   0.9987993 × 102 
r1=–b+t2 –b+(b2–4ac)1/2   0.1200700 × 100 

r1=r1/2 (–b+(b2–4ac)1/2)/2   0.6003500 × 10–1 

r1=r1/a First root   0.2001167 × 10–1 

r2=–b–t2 –b–(b2–4ac)1/2 –0.1998799 × 103 

r2=r2/2  –0.9993995 × 102 

r2=r2/a Second root –0.3331332 × 102 

print r1, r2 
end 



25 
Intel Labs 

Tracing with accuracy-aware tool 
 HULPs S.M. digits         Value   ±
 ldd * / √ 
t1 = b * b     0    1     0.1000000 × 105 0 0 1 0 0 
t2 = 4 * a     0    2     0.1200000 × 102 0 0 1 0 0 
t2 = t2 * c     0    2     0.2400000 × 102 0 0 2 0 0 
t2 = t1 – t2     0    4     0.9976000 × 105 1 0 3 0 0 
if t2 ≤ 0, print   Test is safe; 
 “degen./complex”;stop   no ambiguity 
t2=sqrt(t2)     1    7 ~  0.9987993 × 102 1 0 3 0 1 
r1=–b+t2 100    5 ~  0.1200700 × 100 2 2 3 0 1 

r1=r1/2 100    5 ~  0.6003500 ×10–1 2 2 3 1 1 

r1=r1/a 101    7 ~  0.2001167 ×10–1 2 2 3 2 1 

r2=–b–t2     2    7 ~–0.1998799 × 103 2 0 3 0 1 

r2=r2/2     3    7 ~–0.9993995 × 102 2 0 3 1 1 

r2=r2/a     4    7 ~–0.3331332 × 102 2 0 3 2 1 

print r1, r2 
end 
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Can we use 16-bit floating point? 
Three decimals of accuracy 
Dynamic range of 10 orders of magnitude 
 4x savings over 64-bit flops if it can be made 

numerically safe 
What about replacing 64-bit floating point 

with 16-bit interval bounds (32 bits total, still a 
2x savings but mathematically rigorous)? 
 Intel’s Ivy Bridge chip will be first to support 

16-bit floating point storage format (but not 
native ops) 
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Example: Laplace’s Equation 
Magenta line specifies 

boundary condition. 
 Inside the unit square,  

 
 
 (Classic problem for 

relaxation methods, 
but multigrid has 
lowest arithmetic 
complexity.) 

F 

x 

y 
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Laplace’s Solvers: Which is 
Better? 

64-bit floating point method 
seems to have converged. 
15 decimals, some of them 
probably correct. 

16-bit interval arithmetic 
provably bounds answer to 3 
decimals, uses half the 
storage and bandwidth and 
energy 
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A Developer Scenario 
 Developer compiles app with 

tool to track accuracy, display 
results with “± n.nn” outputs 
 Discovers 95% of app only 

needs 16-bit ops; tool 
identifies 5% where 32-bit 
needed. 
 Developer rewrites app for 

16-bit ops, removes accuracy 
tracking for production 
version 
 4x speed in Ivy Bridge, more 

frames per second, less 
power throttling in large data 
center servers 
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Right-Sizing Precision Can 
Relieve the “Memory Wall” 

Each halving of precision relieves the memory wall by about 2x. 
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Experimental Results 
• Speech recognition (sphinx3, from SPECfp) uses 22 bits 

more precision than needed to get required accuracy 
• Computational fluid dynamics (lbm, from SPECfp) uses 

19 bits more precision than needed 
• Shock hydrodynamics (weapons design, from DARPA 

Challenge Problems) uses 15 bits more precision than 
needed 

This is the uniform amount we 
can reduce precision, safely. 

More improvement is possible for 
operation-by-operation trimming. 
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Some Approaches 
Approach Background 
Interval arithmetic Rigorous, historically in Intel MKL, 

decades of papers on how to use it 

Accuracy-tracking 
software tools 

Quick to develop and apply; Berkeley 
backing; leads to hardware efficiency; 
doesn’t change answers, just 
monitors 

Support 128-bit 
precision 

Easy way to check accuracy; not that 
expensive for on-chip scratch results 

Rational arithmetic Represents fractions perfectly; great 
way to check + – * / operations 
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Five Plausible Schemes (Kahan) 
“Can the effects of roundoff upon a floating-point computation be assessed 
without submitting it to a mathematically rigorous and (if feasible at all) time-
consuming error-analysis? In general, No. 

“This mathematical fact of computational life has not deterred advocates of 
schemes like these: 

1. Repeat the computation in arithmetics of increasing precision, increasing it 
until as many as desired of the results’ digits agree. 

2. Repeat the computation in arithmetic of the same precision but rounded 
differently, say Down, and then Up, and maybe Towards Zero too, besides To 
Nearest, and compare three or four results. 

3. Repeat the computation a few times in arithmetic of the same precision 
rounding operations randomly, some Up, some Down, and treat results 
statistically. 

4. Repeat the computation a few times in arithmetic of the same precision but 
with slightly different input data each time, and see how widely results spread. 

5. Perform the computation in Significance Arithmetic, or in Interval Arithmetic. 
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Interval Math: Due for a Revival? 

 Interval Arithmetic has been tried for decades, but often 
produces bounds too loose to be useful. 

 In many other areas of computing, speed has been turned 
into improved quality of answer, not reduction in total task 
time. 

 Midpoint-radius storage ( x ± r ) is more bit-efficient than 
[A,B] because when bounds are tight, A and B have 
redundant bits 

 By doing more flops AND using many cores, we can keep 
the bounds tight, and produce rigorous, high-quality 
answers for the first time. 

A ≤ x ≤ B, or x is in [A, B], where A and B are 
representable, exact floating-point numbers 
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Rigorous bound approaches exist 
for 

Radiation transfer (graphics, heat) 
Pin-connected truss structures (general structural 

analysis in the limit of fine structures) 
N-body dynamics (useful for provable CFD?) 
PDEs like Laplace where bounding the forcing 

function leads to bounds on the answer 
This could be a “Golden Age” for algorithm 

research! We need all new methods. 
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Analogy: Printing in 1970 versus 
2012 

We use faster technology for better 
prints, not to do low-quality prints in 

milliseconds. 
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The Single-Use Expression problem 
 What wrecks interval arithmetic is simple things like 

F(x) = x – x. 

 The answer should be 0, or maybe [–ε, +ε]. But if x is the 
interval [3, 4], then interval x – x stupidly evaluates to [–1, 
+1], which doubles the uncertainty (interval width) and 
makes the interval solution far inferior to the point arithmetic 
method. 

 Interval proponents say we should seek expressions where 
each variable only occurs once (SUE = Single Use 
Expression). But that’s impractical or impossible in general. 

 One approach, “mincing”, not only solves the problem but 
gives us something to do with all those millions of cores! 
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Rigorous Quadratic Equation 
Bounds-1 

38 

• Find roots r1, r2 for interval a, b, c values in 
ax2+bx+c=0. 

• Completely contain possible answer set, without 
waste. 

r1 

r2 
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Rigorous Quadratic Equation 
Bounds-2 • Remove all squares not part of the cover set. 

r1 

r2 
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Rigorous Quadratic Equation 
Bounds-3 • Assign processors different 2D intervals in that 

cover set, each propagating to the next computing 
task 
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Benefits of this approach 
1. This is a new direction of scaling a problem. The more 

processors and speed, the higher the answer quality. A 
single core gets a rigorous “containment” of the answer, 
but looser than a powerful computer can get. 

2. Provides resiliency check for floating-point math; error 
shows up as a value that is not contiguous when the 
starting set was contiguous. (Like a voting scheme, except 
there is no useless redundancy; every computation helps 
get answer) 

3. Drastically increases the ratio of useful floating-point 
operations to memory operations, helping with “the 
memory wall”! 
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Even the 3-Body Problem is Highly 
Parallel  Appears “Embarrassingly Serial” with only 18 variables, yet 

simulation involves a huge number of serial steps. 
 However: each step produces an irregular containment set. 

Use all available cores to track. 
 Far more ops per data point. Billions of cores usefully 

employed. Provable bounds on the answer. 
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Linear Solvers: Challenging Once Again? 
• Even 2 equations in 2 unknowns involves 

computational geometry… intersecting 8 half-planes (2 
parallelograms). 

• “Ill-posed” problems much less of a problem with 
intervals! 

• Ultimate solution is the minimum “containment set.” 
• Box around that solution leads to “the wrapping 

problem” 
• Gaussian elimination with interval values leads to 

VERY sloppy (usually useless) bounds! 
Answer is the set of all x-y 
floating-point squares 
containing any part of the 
overlap. 

Sloppy bound is the box 
interval containing the 
overlap. 

x 

y 
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Idea Convergence 

Intel Labs 
test chip 

Accuracy fields 
attached to FP 

Automate much of the 
work of a numerical analyst 

Interval arithmetic 
made practical 

New parallel 
techniques for tight, 

rigorous bounds Hardware with built-in 
X±r accuracy tracking 

field 

Accuracy-
Aware 

Arithmetic 

Numbers that know 
their own accuracy 

and history 

Note: This involves NO changes to IEEE arithmetic. 
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Summary 
DRAM bandwidth is precious. 
So is DRAM. 
Making arithmetic accuracy-aware 
reduces the number of bits we need to 
move, saving time, bandwidth, & 
energy. 
This addresses a chronic problem with 
floating-point math being treacherous. 
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Perhaps “accuracy-aware 
arithmetic” is the next step 

in mathematical 
computing. 

Integers 
Fixed-point Floating-point Accuracy-aware 
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