

Terminology reminders

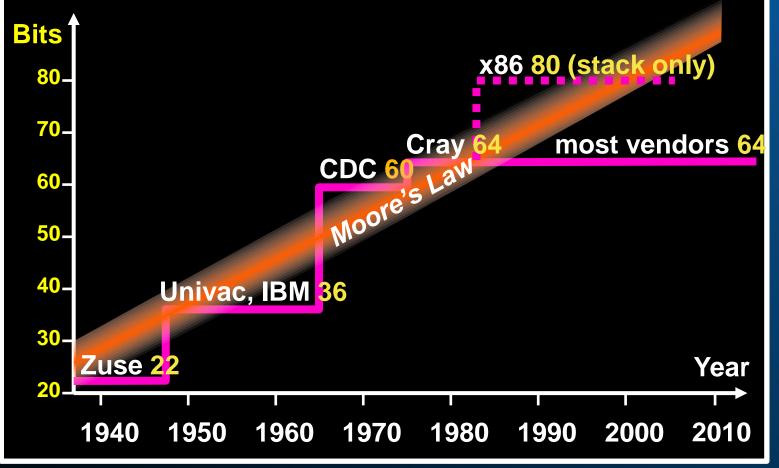
- Precision = Digits available to store a number ("32-bit" or "4 decimal", for example)
- Accuracy = Number of valid digits in a result ("to three significant digits", for example)
- ULP = Unit of Least Precision.

Precision is not a goal. Precision is the means, accuracy is the en

The Problem

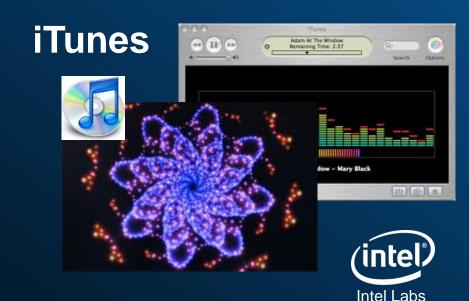
- Current floating-point math wastes energy, power, time, and storage, by using worst-case precision everywhere.
- Widespread issue, beyond just HPC; precision excess is prevalent in search, cloud, games, graphics, financial calculations, speech recognition...
- FP is hard to use because programming bugs and rounding errors look alike!
- Constraint: We *must* continue to support the IEEE standard.

Using 64-bit everywhere is Is it enough? Speculatione're guessing.



Benefits of efficient math reach across a wide range of applications

Source: Andrew Kormornicki, IBM



Financia Sector

$\mathbf{c} = \mathbf{S} \mathbf{N}(\mathbf{d}_1) - \mathbf{X} \mathbf{e}^{\cdot r(T-t)} \mathbf{N}(\mathbf{d}_2)$
where $\frac{\ln (S/X) + (r \cdot s^{2}/2) (T-t)}{d_{1}} = s \sqrt{T-t}$
$\mathbf{d}_2 = \mathbf{d}_1 - s \sqrt{T - t}$
$\begin{array}{l} c = call \mbox{ option price} \\ S = current stock \mbox{ price} \\ X = exercise \mbox{ price} \\ e^{rtC+0} = continuously \mbox{ compounded risk free rate} \\ s = standard \mbox{ deviation of stock price returns} \\ T = maturity \mbox{ date} \\ t = date \mbox{ option is being valued} \\ N(x) = cumulative \mbox{ price barbability distribution function for} \\ standardized \mbox{ normal variable} \end{array}$

Black Scholes Pricing Formula

The Opportunity

- We can reduce bandwidth requirements by enabling **safe use of reduced precision**.
- Tools can help guarantee accurate calculations involving real numbers; make computers "self aware" of accuracy
- We can maintain the IEEE Standard legacy, but right-size the precision we use.

Reduce power, get better answers, and improve performance, *all at once*.

When you don't know accuracy (1)...

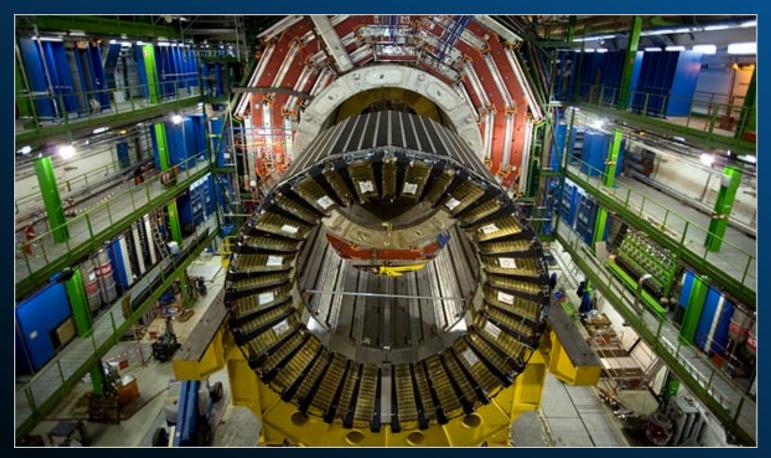
Sleipner Oil Rig Collapse. Loss: \$700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

When you don't know accuracy (2). Vancouver stock exchange index undervalued by 50%

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html

When you don't know accuracy (3)... 2011: CERN faces need for 1.9x more memory



Source of data: Andrezej Nowak, CERN

...and inaccuracy can *really* hurt Patriot missile accident killed 28 Americans.

See http://www.fas.org/spp/starwars/gao/im92026.htm

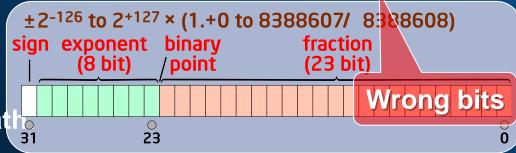
Quick Tutorial on Rounding Error

"0.1 second" in single precision isn't exact.

It's 0.1000002384185791015625, rounded. Every addition will be a little bit off.

Accumulating seconds, 0.1 at a time, for 100 hours, will be off by at least *three minutes*!

As other speakers have said: (a + b) + c is NOT the same as a + (b + c) in floating-point mathomson



a = 1.0 b = 100000000. c = -100000000.

(a + b) rounds down to = 100000000. Add *c*, get 0.0. (b + c) = 0 exactly, with no rounding. Add *a*, get 1.0.

So floating point math fails algebra. Big headache for parallel programming. Bug, or rounding error? Accuracy-awareness solves this problem.

Intel Labs

"Unbiased rounding" won't save you Worst case + nulps

Statistical case ~ $\pm \sqrt{n}$ ULPS after n independent roundings

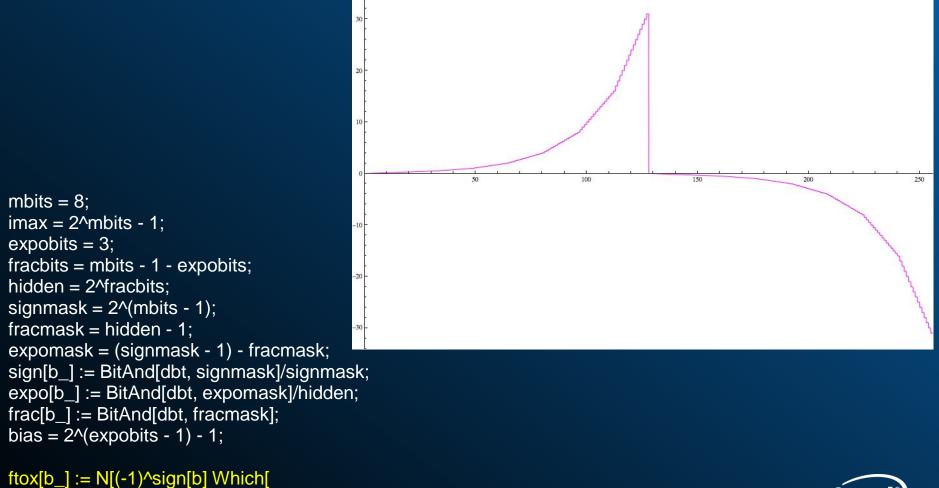
n = # of floating-point ops

Statistical case ~ $\pm \sqrt{n}$ ULPS after *n* independent roundings

- HU are or st n o as on perations ULP s Rounding biases are not always statistically independent!
- And at petaflops/sec, "creeping crud" accumulates fast.

Intel Labs

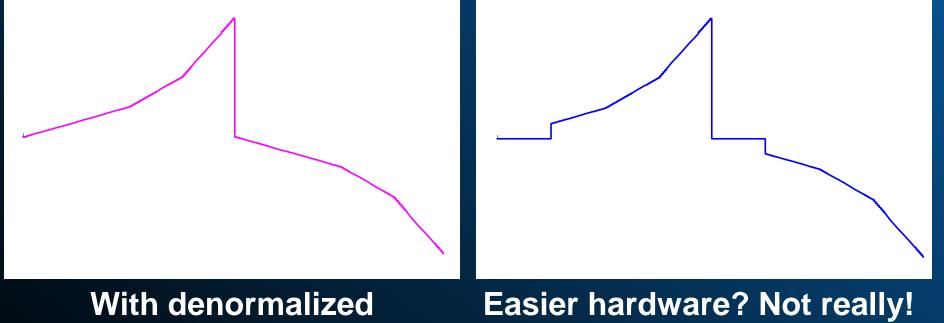
IEEE-style floating point at any precision (via Mathematica)



 $expo[b] == 0, frac[b]*2^{(1 - bias - fracbits)},$ $expo[b] > 0, 2^{(expo[b] - bias)} (1 + frac[b]/hidden)]]$

Denormalized floats aren't 'weird'

What's weird is *not* using them. Using 8-bit floats to illustrate:



With denormalized numbers. "Gradual underflow" Easier hardware? Not really! Clip to zero. GPUs do this. Why? (intel)

Intel Labs

Sources of numerical inaccuracy

- Machine-caused errors
 - Cumulative rounding ("creeping crud")
 - Left-digit destruction (subtracting similar numbers)
 - Operations on values of very different magnitudes (catastrophic accuracy destruction; like, 10¹⁶ + 3.14 gives 10¹⁶.)
 - I/O; conversion of decimal to binary numbers and back
- Programmer-caused errors
 - Naïve algorithms
 - Poor guarding of user input, e.g. sin(x) allowing $x = 10^{+300}$
- Nature-caused errors (soft errors)

Miscellaneous Principles for Roundoff Control

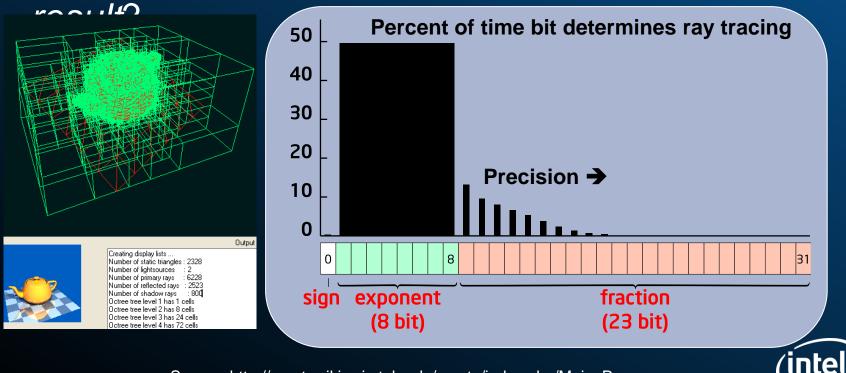
- Don't differentiate numerically. Find an integral formulation of the problem!
- Use high-precision accumulators; this may allow reduced-precision data stored in DRAM
- If you need bitwise reproducibility for debugging, use parallel random number generators, and binary sum collapse even when summing on a single processor
- Lean on high-quality library routines, even for simple things like dot products, instead of writing your own (side effect: improves maintainability code)

"How do you know your answer is correct?"

- "(Laughter) "What do you mean?"(This is the most common response)
- "We used double precision."
- "It's the same answer we've always gotten."
- "It's the same answer others get."
- "It agrees with special-case analytic answers."

It's unlikely a code uses the best precision

- Too few bits gives unacceptable errors
- Too many bits wastes memory, bandwidth, energy
- 15 decimals everywhere to get 4 decimals in



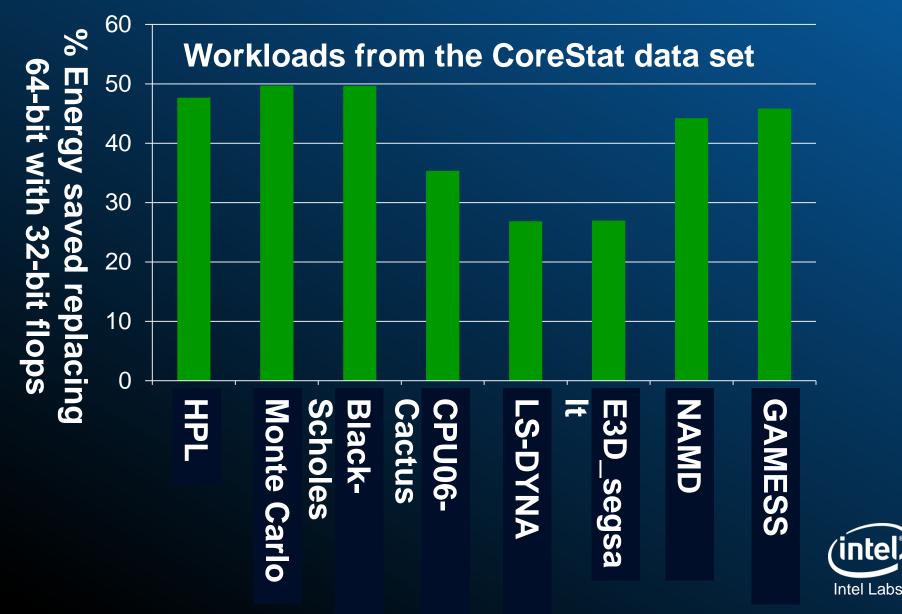
Source: http://mantawiki.sci.utah.edu/manta/index.php/Main_Page

Intel Labs

Excess precision burdens DRAM energy, which is improving *too slowly*

Approximate energy consumed today					
64 pJ					
6 pJ					
4200 pJ					
2100 pJ					
Simply using single precision in DRAM instead of double saves as much energy as 30 on-chip floating- source: S. Borker, milet. Data is for 32 mill technology ca. 2010					

Energy savings from halving flop-width



Accuracy-Aware Debugging Ideas

- Annotate FP code to track rounding history of each value. Initial values flagged as exact or inexact.
- Attach "odometer" for how many adds, mults, divs, roots, etc. Triad operations inherit total histories of parents plus current operation.
- Distinguish left-digit destruction (Idd) from rounding
 - $-3.14159 3.14000 = 1.59 \times 10^{-3}$ (left digit destruction)

-10000000 + 0.5 = 10000000 (rounding)

 Halt options: relative error too high, absolute error too high, conditional test indeterminate.

Example: Quadratic Equation

- Programmer needs to solve $ax^2 + bx + c = 0$
- Recalling elementary school math, naïvely uses r_1 , $r_2 = (-b \pm (b^2 4ac)^{1/2})/(2a)$
- But $(b^2 4ac)^{1/2}$ might be very close to $\pm b$, resulting in left-digit destruction for one root.

Let's try this for a = 3, b = 100, c = 2, and seven-decimal precision.

Operation trace

t1=b*b t2=4*a t2=t2*c t2=t1-t2 if $t2 \le 0$, then print "degenerate or non-real answer" stop end if t2=sqrt(t2)r1=-b+t2r1 = r1/2r1=r1/ar2=-b-t2r2=r2/2r2=r2/aprint r1, r2

end

 b^2 4a 4ac $b^2 - 4ac$ Exit if solution is degenerate or involves imaginary numbers

 $(b^2-4ac)^{1/2}$ -b+ $(b^2-4ac)^{1/2}$ $(-b+(b^2-4ac)^{1/2})/2$ First root -b- $(b^2-4ac)^{1/2}$

Second root

 0.1000000×10^{5} 0.1200000×10^{2} 0.2400000×10^{2} 0.9976000×10^{4}

 $\begin{array}{c} 0.9987993 \times 10^2 \\ 0.1200700 \times 10^0 \\ 0.6003500 \times 10^{-1} \\ 0.2001167 \times 10^{-1} \\ -0.1998799 \times 10^3 \\ -0.9993995 \times 10^2 \\ -0.3331332 \times 10^2 \end{array}$

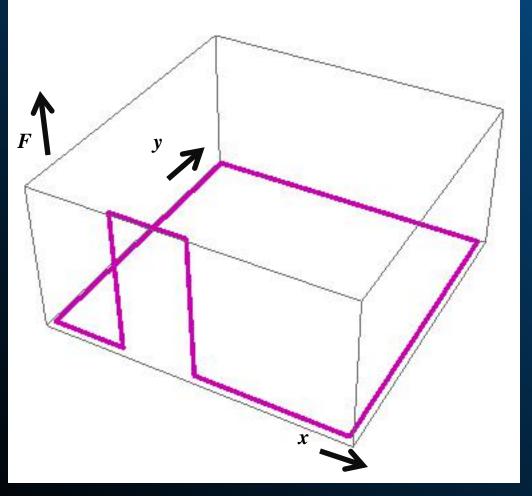
Tracing with accuracy-aware tool

	HULPs Idd *		S.M. digits $$		Val	ue		±
t1 = b * b	0	1	0.1000000 × 10 ⁵	0	0	1	0	0
t2 = 4 * a	0	2	0.1200000 × 10 ²	0	0	1	0	0
t2 = t2 * c	0	2	$0.2400000 imes 10^2$	0	0	2	0	0
t2 = t1 - t2	0	4	0.9976000 × 10 ⁵	1	0	3	0	0
if t2 \leq 0, print			Test is safe;					
"degen./complex"	;stop		no ambiguity					
t2=sqrt(t2)	1	7	~ 0.9987993 × 10 ²	1	0	3	0	1
r1=-b+t2	100	5	~ 0.1200700 × 10 ⁰	2	2	3	0	1
r1=r1/2	100	5	~ 0.6003500 ×10 ^{−1}	2	2	3	1	1
r1=r1/a	101	7	~ 0.2001167 ×10 ^{−1}	2	2	3	2	1
r2=-b-t2	2	7	~−0.1998799 × 10 ³	2	0	3	0	1
r2=r2/2	3	7	~−0.9993995 × 10²	2	0	3	1	1
r2=r2/a	4	7	~−0.3331332 × 10 ²	2	0	3	2 /in	
print r1, r2								tel
end							Inte	l Labs

Can we use 16-bit floating point?

- Three decimals of accuracy
- Dynamic range of 10 orders of magnitude
- 4x savings over 64-bit flops if it can be made numerically safe
- What about replacing 64-bit floating point with 16-bit interval bounds (32 bits total, still a 2x savings but mathematically rigorous)?
- Intel's Ivy Bridge chip will be first to support 16-bit floating point storage format (but not native ops)

Example: Laplace's Equation



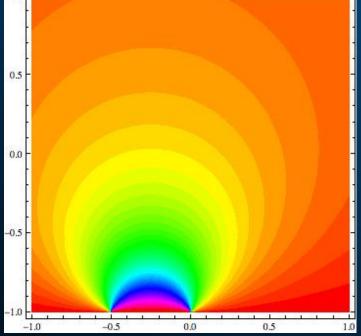
• Magenta line specifies boundary condition.

• Inside the unit square,

 $\nabla^2 F = 0$

 (Classic problem for relaxation methods, but multigrid has lowest arithmetic complexity.)

Laplace's Solvers: Which is Better?

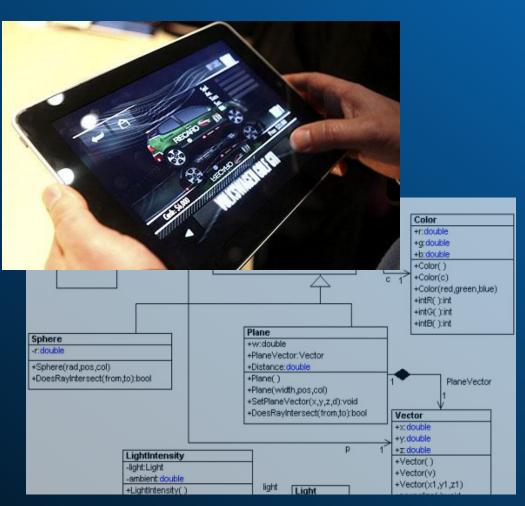


64-bit floating point methodseems to have converged.15 decimals, some of themprobably correct.

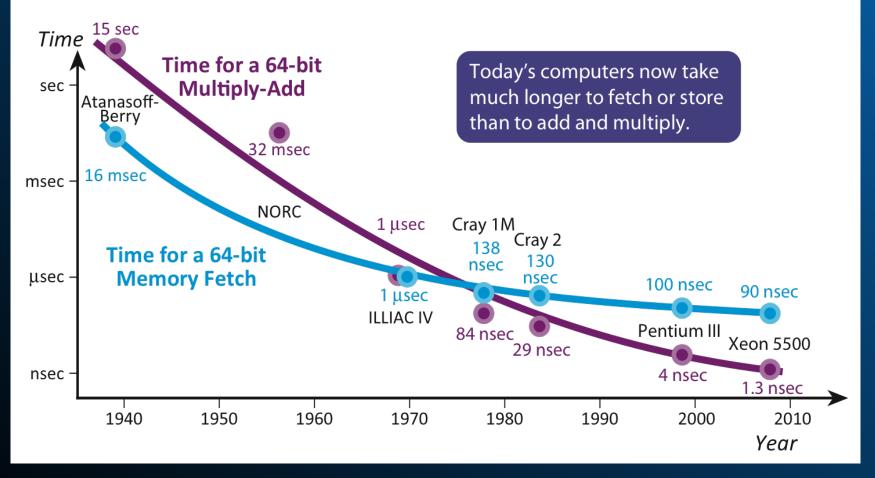
16-bit *interval* arithmetic provably bounds answer to 3 decimals, uses half the storage and bandwidth and energy

A Developer Scenario

- Developer compiles app with tool to track accuracy, display results with "± n.nn" outputs
- Discovers 95% of app only needs 16-bit ops; tool identifies 5% where 32-bit needed.
- Developer rewrites app for 16-bit ops, *removes* accuracy tracking for production version
- 4x speed in Ivy Bridge, more frames per second, less power throttling in large data center servers



Right-Sizing Precision Can Relieve the "Memory Wall"



Each halving of precision relieves the memory wall by about 2 intel

30

Experimental Results

- Speech recognition (sphinx3, from SPECfp) uses 22 bits more precision than needed to get required accuracy
- Computational fluid dynamics (lbm, from SPECfp) uses 19 bits more precision than needed
- Shock hydrodynamics (weapons design, from DARPA Challenge Problems) uses 15 bits more precision than needed

This is the *uniform* amount we can reduce precision, safely. More improvement is possible for operation-by-operation trimming.

Some Approaches

Approach	Background
Interval arithmetic	Rigorous, historically in Intel MKL, decades of papers on how to use it
Accuracy-tracking software tools	Quick to develop and apply; Berkeley backing; leads to hardware efficiency; doesn't change answers , just monitors
Support 128-bit precision	Easy way to check accuracy; not that expensive for on-chip scratch results
Rational arithmetic	Represents fractions perfectly; great way to check $+ - *$ / operations

Five Plausible Schemes (Kahan)

"Can the effects of roundoff upon a floating-point computation be assessed without submitting it to a mathematically rigorous and (if feasible at all) timeconsuming error-analysis? In general, *No*.

"This mathematical fact of computational life has not deterred advocates of schemes like these:

- 1. Repeat the computation in arithmetics of increasing precision, increasing it until as many as desired of the results' digits agree.
- 2. Repeat the computation in arithmetic of the same precision but rounded differently, say *Down*, and then *Up*, and maybe *Towards Zero* too, besides *To Nearest*, and compare three or four results.
- 3. Repeat the computation a few times in arithmetic of the same precision rounding operations randomly, some *Up*, some *Down*, and treat results statistically.
- 4. Repeat the computation a few times in arithmetic of the same precision but with slightly different input data each time, and see how widely results spread.
- 5. Perform the computation in Significance Arithmetic, or in Interval Arithmetice

Intel Labs

Interval Math: Due for a Revival?

 $A \le x \le B$, or x is in [A, B], where A and B are representable, exact floating-point numbers

- Interval Arithmetic has been tried for decades, but often produces bounds too loose to be useful.
- In many other areas of computing, speed has been turned into improved quality of answer, not reduction in total task time.
- Midpoint-radius storage (x ± r) is more bit-efficient than [A,B] because when bounds are tight, A and B have redundant bits
- By doing more flops AND using many cores, we can keep the bounds tight, and produce rigorous, high-quality answers for the first time.

Rigorous bound approaches exist for

- Radiation transfer (graphics, heat)
- Pin-connected truss structures (general structural analysis in the limit of fine structures)
- N-body dynamics (useful for provable CFD?)
- PDEs like Laplace where bounding the forcing function leads to bounds on the answer
- This could be a "Golden Age" for algorithm research! We need all new methods.

Analogy: Printing in 1970 versus 2012

		DISK OPERATING SYSTEM/360 FURTRAN 360N-F	0-451 CL
c c		ROBERT GLASER, RANDALLSTOWN SENIOR, GROUP PRIME NUMBERS DO 100 I=1,1000	A, P AND S
		J=2 K=2 L=J×K	
		L-J-A IF (L-1) ID,100,10 M=2+3	
		IF (K-I) 20,3,3 K=K+1	
		GO TO 2 K=2	
	5	IF (J-1) 5+4+4 J=J+1 GD TO 2	
		WRITE (3,6) I FORMAT (110)	
1	00	CONTINUE	
		END	

We use faster technology for better prints, not to do low-quality prints in milliseconds.

The Single-Use Expression problem

• What wrecks interval arithmetic is simple things like

F(x)=x-x.

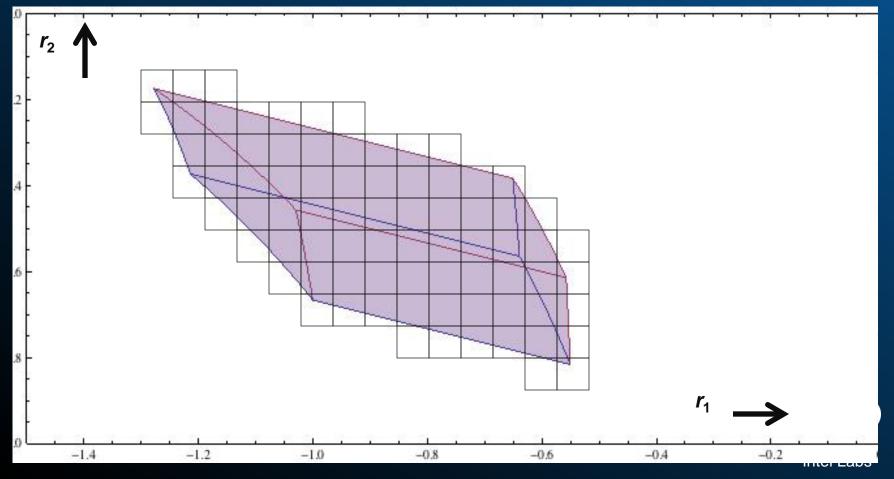
- The answer should be 0, or maybe [-ε, +ε]. But if x is the interval [3, 4], then interval x x stupidly evaluates to [-1, +1], which doubles the uncertainty (interval width) and makes the interval solution far inferior to the point arithmetic method.
- Interval proponents say we should seek expressions where each variable only occurs once (SUE = Single Use Expression). But that's impractical or impossible in general.
- One approach, "mincing", not only solves the problem but gives us something to do with all those millions of cores!

Rigorous Quadratic Equation

- Find roots \underline{r}_1 , r_2 for **Breenvard**, So, 1 values in $ax^2+bx+c=0$.
- Completely contain possible answer set, without

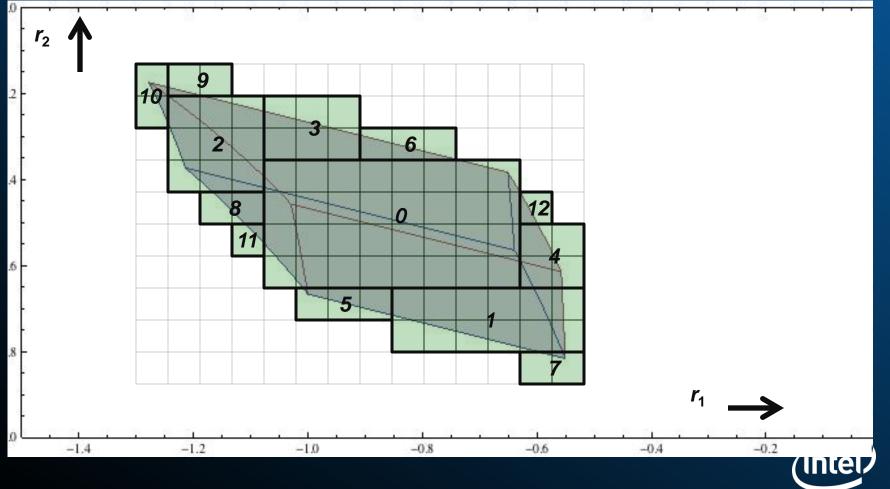


Remove all square Bound Srife cover set.



• Assign processor **Ballo and Strevals** in that

cover set, each propagating to the next computing



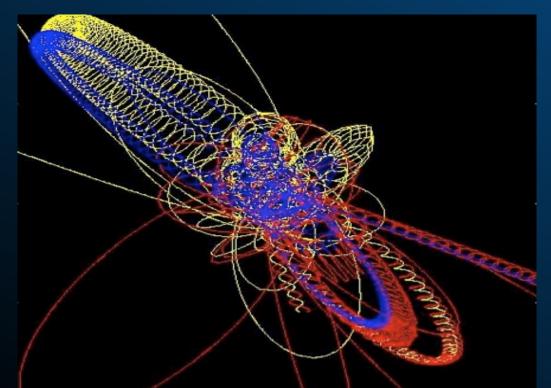
Intel Labs

Benefits of this approach

- 1. This is a new direction of scaling a problem. The more processors and speed, the higher the answer quality. A single core gets a rigorous "containment" of the answer, but looser than a powerful computer can get.
- 2. Provides resiliency check for floating-point math; error shows up as a value that is *not contiguous* when the starting set was contiguous. (Like a voting scheme, except there is no useless redundancy; every computation helps get answer)
- 3. Drastically increases the ratio of useful floating-point operations to memory operations, helping with "the memory wall"!

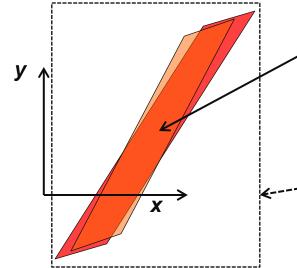
Even the 3-Body Problem is Highly

- Appears "Embarrassingly Control only 18 variables, yet simulation involves a huge number of serial steps.
- However: each step produces an irregular containment set.
 Use all available cores to track.
- Far more ops per data point. Billions of cores usefully employed. Provable bounds on the answer.



Linear Solvers: Challenging Once Again?

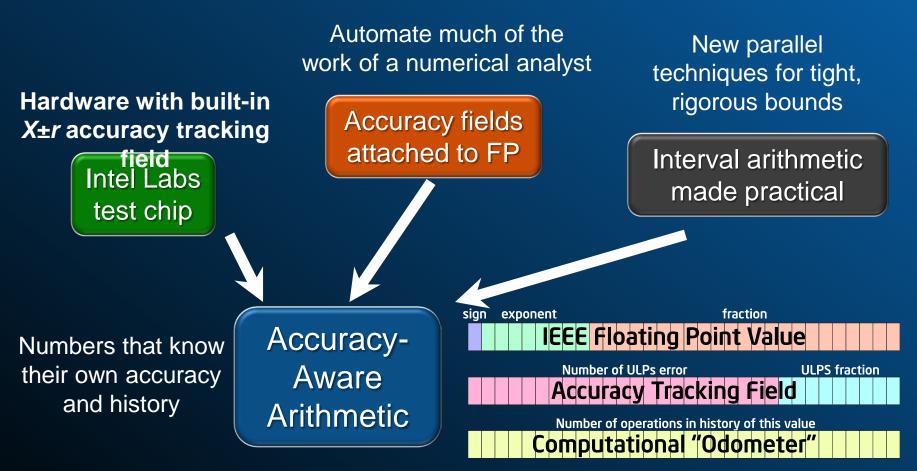
- Even 2 equations in 2 unknowns involves computational geometry... intersecting 8 half-planes (2 parallelograms).
- "Ill-posed" problems much less of a problem with intervals!
- Ultimate solution is the minimum "containment set."
- Box around that solution leads to "the wrapping problem"



Answer is the set of all *x*-*y* floating-point squares containing *any part* of the overlap.

Sloppy bound is the box interval containing the overlap.

Idea Convergence



Note: This involves NO changes to IEEE arithmetic.

Summary

- DRAM bandwidth is precious.So is DRAM.
- Making arithmetic accuracy-aware reduces the number of bits we need to move, saving time, bandwidth, & energy.
- This addresses a chronic problem with floating-point math being treacherous.

