
1
Intel Labs

Accuracy-Aware
Development Environment

for
High-Efficiency Math

Dr. John Gustafson
Director

Intel Labs

Integers
Fixed-point Floating-point Accuracy-aware

2
Intel Labs

Terminology reminders
Precision = Digits available to store a number

(“32-bit” or “4 decimal”, for example)
Accuracy = Number of valid digits in a result (“to

three significant digits”, for example)
ULP = Unit of Least Precision.

Precision is not a goal.
Precision is the means, accuracy is the en

3
Intel Labs

The Problem
Current floating-point math wastes energy, power,

time, and storage, by using worst-case precision
everywhere.
Widespread issue, beyond just HPC; precision

excess is prevalent in search, cloud, games,
graphics, financial calculations, speech
recognition…
FP is hard to use because programming bugs and

rounding errors look alike!
Constraint: We must continue to support the IEEE

standard.

4
Intel Labs

Using 64-bit everywhere is
speculation Is it enough? Is it too much? We’re guessing.

70

80

1970 1980 1990 2000

Bits

Year

CDC 60

2010
20

30

40

50

60

1940 1950 1960

Zuse 22

Univac, IBM 36

Cray 64 most vendors 64

x86 80 (stack only)

5
Intel Labs

Benefits of efficient math reach
across a wide range of

applications

Financial
Sector

iTunes

Angry
Birds
(box3d
games)

Google’s Page Rank

Source: Andrew Kormornicki, IBM

6
Intel Labs

The Opportunity
We can reduce bandwidth requirements by

enabling safe use of reduced precision.
Tools can help guarantee accurate calculations

involving real numbers; make computers “self
aware” of accuracy
We can maintain the IEEE Standard legacy, but

right-size the precision we use.

Reduce power, get better answers,
and improve performance, all at once.

7
Intel Labs

When you don’t know accuracy
(1)…

Sleipner Oil Rig Collapse. Loss: $700 million.

See http://www.ima.umn.edu/~arnold/disasters/sleipner.html

8
Intel Labs

When you don’t know accuracy
(2)…

Vancouver stock exchange index undervalued by 50%

See http://ta.twi.tudelft.nl/usersvuik/wi211/disasters.html

9
Intel Labs

When you don’t know accuracy
(3)…

2011: CERN faces need for 1.9x more memory

Source of data: Andrezej Nowak, CERN

10
Intel Labs

…and inaccuracy can really hurt
Patriot missile accident killed 28 Americans.

See http://www.fas.org/spp/starwars/gao/im92026.htm

11
Intel Labs

Quick Tutorial on Rounding
Error

“0.1 second” in single precision isn’t exact.
It’s 0.10000002384185791015625, rounded. Every addition will be a little bit off.

As other speakers have said:
(a + b) + c is NOT the same as
a + (b + c) in floating-point math.

a = 1.0
b = 100000000.
c = –100000000.

(a + b) rounds down to = 100000000. Add c, get 0.0.
(b + c) = 0 exactly, with no rounding. Add a, get 1.0.

So floating point math fails algebra.
Big headache for parallel programming. Bug, or rounding error?

Accuracy-awareness solves this problem.

Accumulating seconds, 0.1 at a time, for 100 hours,
will be off by at least three minutes!

Wrong bits

12
Intel Labs

“Unbiased rounding” won’t save you

 Rounding biases are not always statistically independent!
 And at petaflops/sec, “creeping crud” accumulates fast.

n = # of floating-point ops

Statistical case ~ ±√n ULPS
after n independent roundings

Statistical case ~ ±√n ULPS
after n independent roundings

13
Intel Labs

IEEE-style floating point at any
precision (via Mathematica)

mbits = 8;
imax = 2^mbits - 1;
expobits = 3;
fracbits = mbits - 1 - expobits;
hidden = 2^fracbits;
signmask = 2^(mbits - 1);
fracmask = hidden - 1;
expomask = (signmask - 1) - fracmask;
sign[b_] := BitAnd[dbt, signmask]/signmask;
expo[b_] := BitAnd[dbt, expomask]/hidden;
frac[b_] := BitAnd[dbt, fracmask];
bias = 2^(expobits - 1) - 1;

ftox[b_] := N[(-1)^sign[b] Which[
 expo[b] == 0, frac[b]*2^(1 - bias - fracbits),
 expo[b] > 0, 2^(expo[b] - bias) (1 + frac[b]/hidden)]]

14
Intel Labs

Denormalized floats aren’t ‘weird’
What’s weird is not using them.
Using 8-bit floats to illustrate:

With denormalized
numbers.

“Gradual underflow”

Easier hardware? Not really!
Clip to zero.

GPUs do this. Why?

15
Intel Labs

Sources of numerical inaccuracy
• Machine-caused errors

• Cumulative rounding (“creeping crud”)
• Left-digit destruction (subtracting similar numbers)
• Operations on values of very different magnitudes

(catastrophic accuracy destruction; like,1016 + 3.14
gives 1016.)

• I/O; conversion of decimal to binary numbers and back

• Programmer-caused errors
• Naïve algorithms
• Poor guarding of user input, e.g. sin(x) allowing x =

10+300

• Nature-caused errors (soft errors)

16
Intel Labs

17
Intel Labs

Miscellaneous Principles for Roundoff
Control

Don’t differentiate numerically. Find an integral
formulation of the problem!
Use high-precision accumulators; this may allow

reduced-precision data stored in DRAM
 If you need bitwise reproducibility for debugging,

use parallel random number generators, and
binary sum collapse even when summing on a
single processor
 Lean on high-quality library routines, even for

simple things like dot products, instead of writing
your own (side effect: improves maintainability of
code)

18
Intel Labs

“How do you know your answer is
correct?”

“(Laughter) “What do you mean?”(This is the
most common response)

“We used double precision.”

“It’s the same answer we’ve always gotten.”

“It’s the same answer others get.”

“It agrees with special-case analytic
answers.”

19
Intel Labs

It’s unlikely a code uses the best
precision

• Too few bits gives unacceptable errors
• Too many bits wastes memory, bandwidth, energy
• 15 decimals everywhere to get 4 decimals in

result?

Source: http://mantawiki.sci.utah.edu/manta/index.php/Main_Page

Percent of time bit determines ray tracing

Precision

20
Intel Labs

Excess precision burdens DRAM
energy, which is improving too slowly

Operation Approximate
energy consumed

today
64-bit multiply-add 64 pJ
Read/store register data 6 pJ
Read 64 bits from DRAM 4200 pJ
Read 32 bits from DRAM 2100 pJ

Source: S. Borkar, Intel. Data is for 32 nm technology ca. 2010

Simply using single precision in DRAM instead of
double saves as much energy as 30 on-chip floating-

point operations.

21
Intel Labs

Energy savings from halving flop-width

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

%
 Energy saved replacing
64-bit w

ith 32-bit flops H
PL

M
onte C

arlo

B
lack-

Scholes

C
PU

06-
C

actus

LS-D
YN

A

E3D
_segsa

lt N
A

M
D

G
A

M
ESS

Workloads from the CoreStat data set

22
Intel Labs

Accuracy-Aware Debugging Ideas
 Annotate FP code to track rounding history of each

value. Initial values flagged as exact or inexact.
 Attach “odometer” for how many adds, mults, divs,

roots, etc. Triad operations inherit total histories of
parents plus current operation.
 Distinguish left-digit destruction (ldd) from rounding

– 3.14159 – 3.14000 = 1.59×10–3 (left digit destruction)

– 10000000 + 0.5 = 10000000 (rounding)
 Halt options: relative error too high, absolute error

too high, conditional test indeterminate.

23
Intel Labs

Example: Quadratic Equation
Programmer needs to solve ax2 + bx + c = 0
Recalling elementary school math, naïvely uses

r1, r2 = (–b ± (b2 – 4ac)1/2)/(2a)
But (b2 – 4ac)1/2 might be very close to ±b,

resulting in left-digit destruction for one root.

Let’s try this for a = 3, b = 100, c = 2,
and seven-decimal precision.

24
Intel Labs

Operation trace
t1=b*b b2 0.1000000 × 105
t2=4*a 4a 0.1200000 × 102
t2=t2*c 4ac 0.2400000 × 102
t2=t1–t2 b2 – 4ac 0.9976000 × 104
if t2≤0, then print Exit if solution is
 “degenerate or degenerate or involves
 non-real answer” imaginary numbers
 stop
end if
t2=sqrt(t2) (b2–4ac)1/2 0.9987993 × 102
r1=–b+t2 –b+(b2–4ac)1/2 0.1200700 × 100

r1=r1/2 (–b+(b2–4ac)1/2)/2 0.6003500 × 10–1

r1=r1/a First root 0.2001167 × 10–1

r2=–b–t2 –b–(b2–4ac)1/2 –0.1998799 × 103

r2=r2/2 –0.9993995 × 102

r2=r2/a Second root –0.3331332 × 102

print r1, r2
end

25
Intel Labs

Tracing with accuracy-aware tool
 HULPs S.M. digits Value ±
 ldd * / √
t1 = b * b 0 1 0.1000000 × 105 0 0 1 0 0
t2 = 4 * a 0 2 0.1200000 × 102 0 0 1 0 0
t2 = t2 * c 0 2 0.2400000 × 102 0 0 2 0 0
t2 = t1 – t2 0 4 0.9976000 × 105 1 0 3 0 0
if t2 ≤ 0, print Test is safe;
 “degen./complex”;stop no ambiguity
t2=sqrt(t2) 1 7 ~ 0.9987993 × 102 1 0 3 0 1
r1=–b+t2 100 5 ~ 0.1200700 × 100 2 2 3 0 1

r1=r1/2 100 5 ~ 0.6003500 ×10–1 2 2 3 1 1

r1=r1/a 101 7 ~ 0.2001167 ×10–1 2 2 3 2 1

r2=–b–t2 2 7 ~–0.1998799 × 103 2 0 3 0 1

r2=r2/2 3 7 ~–0.9993995 × 102 2 0 3 1 1

r2=r2/a 4 7 ~–0.3331332 × 102 2 0 3 2 1

print r1, r2
end

26
Intel Labs

Can we use 16-bit floating point?
Three decimals of accuracy
Dynamic range of 10 orders of magnitude
 4x savings over 64-bit flops if it can be made

numerically safe
What about replacing 64-bit floating point

with 16-bit interval bounds (32 bits total, still a
2x savings but mathematically rigorous)?
 Intel’s Ivy Bridge chip will be first to support

16-bit floating point storage format (but not
native ops)

27
Intel Labs

Example: Laplace’s Equation
Magenta line specifies

boundary condition.
 Inside the unit square,

 (Classic problem for

relaxation methods,
but multigrid has
lowest arithmetic
complexity.)

F

x

y

28
Intel Labs

Laplace’s Solvers: Which is
Better?

64-bit floating point method
seems to have converged.
15 decimals, some of them
probably correct.

16-bit interval arithmetic
provably bounds answer to 3
decimals, uses half the
storage and bandwidth and
energy

29
Intel Labs

A Developer Scenario
 Developer compiles app with

tool to track accuracy, display
results with “± n.nn” outputs
 Discovers 95% of app only

needs 16-bit ops; tool
identifies 5% where 32-bit
needed.
 Developer rewrites app for

16-bit ops, removes accuracy
tracking for production
version
 4x speed in Ivy Bridge, more

frames per second, less
power throttling in large data
center servers

30
Intel Labs

Right-Sizing Precision Can
Relieve the “Memory Wall”

Each halving of precision relieves the memory wall by about 2x.

31
Intel Labs

Experimental Results
• Speech recognition (sphinx3, from SPECfp) uses 22 bits

more precision than needed to get required accuracy
• Computational fluid dynamics (lbm, from SPECfp) uses

19 bits more precision than needed
• Shock hydrodynamics (weapons design, from DARPA

Challenge Problems) uses 15 bits more precision than
needed

This is the uniform amount we
can reduce precision, safely.

More improvement is possible for
operation-by-operation trimming.

32
Intel Labs

Some Approaches
Approach Background
Interval arithmetic Rigorous, historically in Intel MKL,

decades of papers on how to use it

Accuracy-tracking
software tools

Quick to develop and apply; Berkeley
backing; leads to hardware efficiency;
doesn’t change answers, just
monitors

Support 128-bit
precision

Easy way to check accuracy; not that
expensive for on-chip scratch results

Rational arithmetic Represents fractions perfectly; great
way to check + – * / operations

33
Intel Labs

Five Plausible Schemes (Kahan)
“Can the effects of roundoff upon a floating-point computation be assessed
without submitting it to a mathematically rigorous and (if feasible at all) time-
consuming error-analysis? In general, No.

“This mathematical fact of computational life has not deterred advocates of
schemes like these:

1. Repeat the computation in arithmetics of increasing precision, increasing it
until as many as desired of the results’ digits agree.

2. Repeat the computation in arithmetic of the same precision but rounded
differently, say Down, and then Up, and maybe Towards Zero too, besides To
Nearest, and compare three or four results.

3. Repeat the computation a few times in arithmetic of the same precision
rounding operations randomly, some Up, some Down, and treat results
statistically.

4. Repeat the computation a few times in arithmetic of the same precision but
with slightly different input data each time, and see how widely results spread.

5. Perform the computation in Significance Arithmetic, or in Interval Arithmetic.

34
Intel Labs

Interval Math: Due for a Revival?

 Interval Arithmetic has been tried for decades, but often
produces bounds too loose to be useful.

 In many other areas of computing, speed has been turned
into improved quality of answer, not reduction in total task
time.

 Midpoint-radius storage (x ± r) is more bit-efficient than
[A,B] because when bounds are tight, A and B have
redundant bits

 By doing more flops AND using many cores, we can keep
the bounds tight, and produce rigorous, high-quality
answers for the first time.

A ≤ x ≤ B, or x is in [A, B], where A and B are
representable, exact floating-point numbers

35
Intel Labs

Rigorous bound approaches exist
for

Radiation transfer (graphics, heat)
Pin-connected truss structures (general structural

analysis in the limit of fine structures)
N-body dynamics (useful for provable CFD?)
PDEs like Laplace where bounding the forcing

function leads to bounds on the answer
This could be a “Golden Age” for algorithm

research! We need all new methods.

36
Intel Labs

Analogy: Printing in 1970 versus
2012

We use faster technology for better
prints, not to do low-quality prints in

milliseconds.

37
Intel Labs

The Single-Use Expression problem
 What wrecks interval arithmetic is simple things like

F(x) = x – x.

 The answer should be 0, or maybe [–ε, +ε]. But if x is the
interval [3, 4], then interval x – x stupidly evaluates to [–1,
+1], which doubles the uncertainty (interval width) and
makes the interval solution far inferior to the point arithmetic
method.

 Interval proponents say we should seek expressions where
each variable only occurs once (SUE = Single Use
Expression). But that’s impractical or impossible in general.

 One approach, “mincing”, not only solves the problem but
gives us something to do with all those millions of cores!

38
Intel Labs

Rigorous Quadratic Equation
Bounds-1

38

• Find roots r1, r2 for interval a, b, c values in
ax2+bx+c=0.

• Completely contain possible answer set, without
waste.

r1

r2

39
Intel Labs

Rigorous Quadratic Equation
Bounds-2 • Remove all squares not part of the cover set.

r1

r2

40
Intel Labs

Rigorous Quadratic Equation
Bounds-3 • Assign processors different 2D intervals in that

cover set, each propagating to the next computing
task

r1

r2

0

1

2
3

4

5

6

7

8

9 10

11

12

41
Intel Labs

Benefits of this approach
1. This is a new direction of scaling a problem. The more

processors and speed, the higher the answer quality. A
single core gets a rigorous “containment” of the answer,
but looser than a powerful computer can get.

2. Provides resiliency check for floating-point math; error
shows up as a value that is not contiguous when the
starting set was contiguous. (Like a voting scheme, except
there is no useless redundancy; every computation helps
get answer)

3. Drastically increases the ratio of useful floating-point
operations to memory operations, helping with “the
memory wall”!

42
Intel Labs

Even the 3-Body Problem is Highly
Parallel Appears “Embarrassingly Serial” with only 18 variables, yet

simulation involves a huge number of serial steps.
 However: each step produces an irregular containment set.

Use all available cores to track.
 Far more ops per data point. Billions of cores usefully

employed. Provable bounds on the answer.

43
Intel Labs

Linear Solvers: Challenging Once Again?
• Even 2 equations in 2 unknowns involves

computational geometry… intersecting 8 half-planes (2
parallelograms).

• “Ill-posed” problems much less of a problem with
intervals!

• Ultimate solution is the minimum “containment set.”
• Box around that solution leads to “the wrapping

problem”
• Gaussian elimination with interval values leads to

VERY sloppy (usually useless) bounds!
Answer is the set of all x-y
floating-point squares
containing any part of the
overlap.

Sloppy bound is the box
interval containing the
overlap.

x

y

44
Intel Labs

Idea Convergence

Intel Labs
test chip

Accuracy fields
attached to FP

Automate much of the
work of a numerical analyst

Interval arithmetic
made practical

New parallel
techniques for tight,

rigorous bounds Hardware with built-in
X±r accuracy tracking

field

Accuracy-
Aware

Arithmetic

Numbers that know
their own accuracy

and history

Note: This involves NO changes to IEEE arithmetic.

45
Intel Labs

Summary
DRAM bandwidth is precious.
So is DRAM.
Making arithmetic accuracy-aware
reduces the number of bits we need to
move, saving time, bandwidth, &
energy.
This addresses a chronic problem with
floating-point math being treacherous.

46
Intel Labs

Perhaps “accuracy-aware
arithmetic” is the next step

in mathematical
computing.

Integers
Fixed-point Floating-point Accuracy-aware

	Slide Number 1
	Terminology reminders
	The Problem
	Using 64-bit everywhere is speculation
	Benefits of efficient math reach across a wide range of applications
	The Opportunity
	When you don’t know accuracy (1)…
	When you don’t know accuracy (2)…
	When you don’t know accuracy (3)…
	…and inaccuracy can really hurt
	Quick Tutorial on Rounding Error
	“Unbiased rounding” won’t save you
	IEEE-style floating point at any precision (via Mathematica)
	Denormalized floats aren’t ‘weird’
	Sources of numerical inaccuracy
	Slide Number 16
	Miscellaneous Principles for Roundoff Control
	“How do you know your answer is correct?”
	It’s unlikely a code uses the best precision
	Excess precision burdens DRAM energy, which is improving too slowly
	Energy savings from halving flop-width
	Accuracy-Aware Debugging Ideas
	Example: Quadratic Equation
	Operation trace
	Tracing with accuracy-aware tool
	Can we use 16-bit floating point?
	Example: Laplace’s Equation
	Laplace’s Solvers: Which is Better?
	A Developer Scenario
	Right-Sizing Precision Can Relieve the “Memory Wall”
	Experimental Results
	Some Approaches
	Five Plausible Schemes (Kahan)
	Interval Math: Due for a Revival?
	Rigorous bound approaches exist for
	Analogy: Printing in 1970 versus 2012
	The Single-Use Expression problem
	Rigorous Quadratic Equation Bounds-1
	Rigorous Quadratic Equation Bounds-2
	Rigorous Quadratic Equation Bounds-3
	Benefits of this approach
	Even the 3-Body Problem is Highly Parallel
	Linear Solvers: Challenging Once Again?
	Idea Convergence
	Summary
	Slide Number 46

