

RF and phase reference signal distribution and processing in uTCA based LLRF system

EuCard WP10.6 - LLRF at FLASH

Krzysztof Czuba ISE-WUT On behalf of the LLRF Team

Introduction: RF signals in LLRF

RF and Analog Signals

For one cryomodule we need to process 24 RF signals + synchronization + klystron drive + diagnostics...

That means 24x:

- downconverter channels
- LO distribution
- IF signals to digitizers

High performance of regulation required (0.01 % amplitude, 0.01° phase)

- low crosstalk
- high linearity
- 16-bit ADCs/~80 100 MSPS (x24)

Required also: high reliability (expensive FLASH down time), easy maintenance (hot swap) and 10 fs of RF synchronization

^{rel radio} ^{frequency} 3rd EuCARD Annual Meeting, WUT, 27.04.2012

This Worked in the Past ... Really!

EuCARD Objectives for LLRF at FLASH

- Update electronics and achieve:
 - High performance of RF and analog signal processing
 - High availability
 - Modern form factor (upgrade-ability)
 - Higher computing power

Idea of uTCA (previously ATCA) based system was developed

LLRF in uTCA Crate

- The new LLRF system concept: compact design in uTCA crate
- Both AMC (front) and uRTM (rear) modules are used
- Many RF signals must be distributed inside of the crate (minimum external connections)
- RTM cards with downconverters, vector modulators were designed and integrated with support of the RF Backplane

AMC, RTMs and RF Backplane

7 -

LO, RF and Clock Signal Distribution Inside of the uTCA Crate

RTM Downconverter (DWC)

- Collaborative effort: DESY, WUT
- 10-channel downconverter module
- Change the cavity frequency (1.3 GHz) down to 54 MHz IF signal
- Very high performance required (linearity, low crosstalk, low noise contribution)
- RF Backplane compatible
- Minimum cable connections (LO distribution on board)

DWC RTM Version

- Prototype integrated on RTM form factor in 2011 (M10.6.8)
- Excellent performance

RTM Vector Modulator (uVM)

- Collaborative effort: DESY, TUL, WUT
- Designed for modulation of the klystron input signal
- Driven directly from AMC digital controller card (uTC)
- Assumed minimum front panel connections
- Two-channel device
- Operation frequency range of 216 MHz to 3.9 GHz (for various applications in the machine)
- Objective: low noise floor (below -160 dBc)
- Prototype was successfully tested in 2011 (EuCARD Deliverable 10.6.8)

uVM Device

— 3rd EuCARD Annual Meeting, WUT, 27.04.2012

low level radio fre

RF Backplane

- 10-layer RF board design
- Hybrid construction main board + uRFB shield
- Edge plating for further shielding
- ERNI (3x10 diff pair) for CLK signals
- Radiall Coaxipack 2 for LO and MO signals

LLRF System with vs without RF Backplane

System with signals distributed outside the crate

System with RF Backplane

Ethe

uTCA Crate Tests with the RF Backplane

System tested with presence of digital subsystems

No degradation of field detection performance was observed

uFMC

- uFMC board developed by NCBJ
- Supports fast ADCS (up to 500 MSPS) on FMC cards
- Can be used for direct sampling of GHz signals
- Foreseen for applications like Beam Arrival Monitor and Klystron Life Management

Summary

- The LLRF collaboration supported by EuCARD developed compact and high performance LLRF system
- Highly sophisticated electronics with unique performance developed
- Universal solution with world's first RF Backplane supporting hot-swap on sub 100 fs level of accuracy!
- There is strong interest from other laboratories and companies

 possible commercial production and use for other
 applications (radars, instrumentation for other control systems)
- Full system installation at FLASH planned in summer 2012
- No continuation in EuCARD 2 ...

Thank you for attention!