
Accelerator R&D and construction at the National Centre for Nuclear Research

Grzegorz.Wrochna@ncbj.gov.pl

www.ncbj.gov.pl

- Created 1.09.2011 by merging institutes at Świerk:
 - Soltan Institute for Nuclear Studies (IPJ)
 - Institute of Atomic Energy POLATOM
- Resolution of the Council of Ministers defines its role in the Polish nuclear power programme
 - expert support for public administration
 - research infrastructure for scientists
 - public information centre
 - close collaboration with other institutes
 - symbiosis with universities

- The largest research institute in Poland
 - 1073 empoyees, inc. 56 prof. & 117 PhD
- Scientific achievments:
 - ~320 reviewed papers, 5000 quotations each year
 - Hirsh index = 42, \Rightarrow 7th position in Poland
- Incomes: ~20 M€ (2011)
 - statutory fund 4 M€, grants/projects 7 M€
 - commercial activities 9 M€
- Technical infrastructure
 - ~40 ha green field, 72 000 m² routes & squares
 - o networks: electricity 65 km, telecom 172 km
 - water pipelines 32 km, tanks 1900 m³

Scientific Council

Director

Grzegorz Wrochna

RESEARCH SECTOR

Scientific Director

Ewa Rondio

Deputy for Research Infrastructure Krzysztof Wieteska

Director of DEJGrzegorz Krzysztoszek

Nuclear Energy Department

MARIA Reactor

Director DBP Grzegorz Wilk

Department of Fundamental Research

Director of DFM

Jacek Jagielski

Material
Physics
Department

Material Research Laboratory **Director of DTJ**

Agnieszka Syntfeld-Każuch

Department of Nuclear Techniques & Equipment

Division of Nuclear Equipment HITEC

FUNCTIONAL SECTOR

Director's Office

Director supervised units

Scientific Secretary Krzysztof Kurek

Department of Information & Education

Deputy for Nucl. Safety & Radiolog. Protection Jerzy Kozieł

Department of Nucl. Safety & Health Care

Deputy for Economy & DevelopmentZbigniew Gołębiewski

Department of Economy & Development

Radioisotope Centre POLATOM

Administrative & Technical Deputy Marek Juszczyk

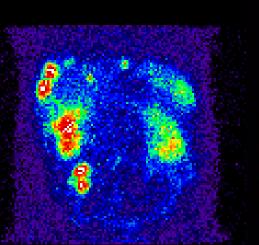
Administration & Technical Department

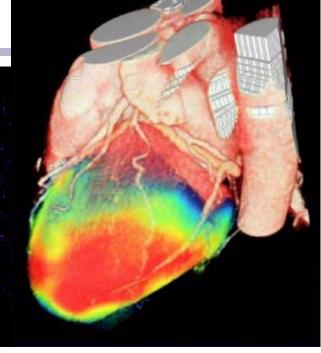
Division of Transport

Research reactor MARIA at Swierk

- built 1974, upgrade 1992
- neutron beam research, activation analysis, isotope production:
 99Mo for medical use

- pool type
- H₂O, Be moderated
- 30 MW thermal power
- neutron flux:
 - thermal 4·10¹⁴ n/cm²s
 - o fast 2·10¹⁴ n/cm²s


Material Testing Laboratory



Hot cells, mechanical tests, structural analysis

Development of new technologies and manufacturing:

- radioactive isotopes
- chemical compounds marked with radioisotopes
- isotope radiation sources

Applications:

- medicine
- industry
- science

Scientific Council

Director

Grzegorz Wrochna

RESEARCH SECTOR

Scientific Director

Ewa Rondio

Deputy for Research Infrastructure Krzysztof Wieteska

Director of DEJ *Grzegorz Krzysztoszek*

Nuclear Energy Department

MARIA Reactor

Director DBP Grzegorz Wilk

> Department of Fundamental Research

Director of DFM Jacek Jagielski

Material
Physics
Department

Material Research Laboratory **Director of DTJ**

Agnieszka Syntfeld-Każuch

Department of Nuclear Techniques & Equipment

Division of Nuclear Equipment HITEC

FUNCTIONAL SECTOR

Director's Office

Director supervised units

Scientific Secretary Krzysztof Kurek

> Department of Information & Education

Deputy for Nucl. Safety & Radiolog. Protection Jerzy Kozieł

Department of Nucl. Safety & Health Care

Deputy for Economy & Development *Zbigniew Gołębiewski*

Department of Economy & Development

Radioisotope Centre POLATOM

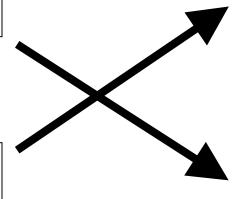
Administrative & Technical Deputy Marek Juszczyk

Administration & Technical Department

Division of Transport

Basic and applied research

Domains:


- nuclear physics
- particle physics
- neutrino physics
- astroparticle physics
- plasma physics

Technologies:

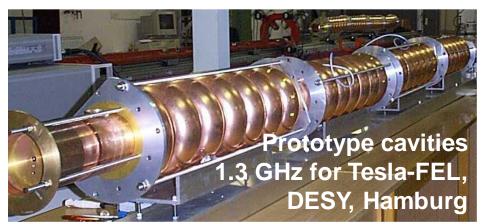
- nuclear
- accelerator
- detector
- material
- informatics

Projects:

- FAIR
- LHC, ILC
- T2K, LAGUNA
- π of the Sky, POLAR, GRIPS
- ITER, W7-X
- ESS, JHR
- FLASH, XFEL

Applications:

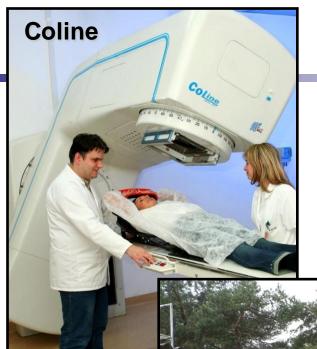
- energy
- industry
- medicine
- environment
- homeland security
- art history


NCBJ @ international projects

LHC

- CMS muon trigger electronics
- ALICE electromagnetic calorimeter
- LHCb straw tube chambers
- LINAC4 proton buncher & PIMS
- XFEL higher order mode absorbers, LLRF
- FAIR PANDA & CMB detectors, e⁻ cooler?
- ITER plasma diagnostics
- W-7X neutral beam injection
- ESS radiation calculations
- JHR under discussion

Components for large experiments



 Sterylisation Radioteraphy Radiography

Accelerators for industry and medicine

Inspection of

- bridges spans
- welds
- frames
- pressure pipes
- castings
- containers
- elements made of steel

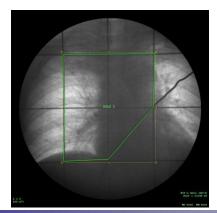
Lillyput 3 for nondestructive inspection

- Stationary and mobile configuration
- X-ray head with integrated modulator and inner cooling system
- Computer controlled
- Photon energy 6 & 9 MV
- Maksimum dose rate
 20 Gy/min *
 (10x10 cm² field in 1 m distance from target)
- * Without flattening filter

Lillyput 3 – mobile version

COLINE linear accelerators for radiotherapy

- Used in standard and conformal radiotherapy
- Several models: energy from 4 to 20 MeV
- Digitally controlled
- Compact and reliable design
- With optional multileaf collimator and electronic portal imaging system
- Ready to connect to therapeutic line



Not only accelerators

All components for treatment:

- Treatment Planning Systems
- X-ray simulators
- Therapeutic tables
- Mould-room equipment
- Protecting doors, shielding ...

Accelerator R&D and construction

Division of accelerator physics and technology

- lead by Dr Sławomir Wronka
- 25 employees

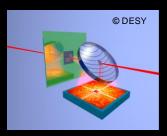
Division of Nuclear Equipment HITEC

- lead by Dr Paweł Krawczyk
- 108 employees

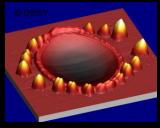
Machines at HITEC Świerk

2008 2009

Nuclear technologies for medicine and industry



- Interface between research and industry
 - office & lab space, administrative & social support
- Specialised in particle accelerators & detectors
 - vacuum, cryogenic & magnet technologies



Free Electron Laser @ Świerk

4th generation light source driven by electron accelerator

3D-imaging: molecules & nano-structures

Material studies: dense plasma properties

Novel technologies: surface modification

Live sciences: biological cell imaging

Continuous e⁻ beam E \rightarrow 600 MeV Radiation wavelength: THz \rightarrow UV 9 nm Pulse length: < 100 fs Beam power (peak): **0.22 GW**Length: up to **400 m**

Cost: **100 M€**

Conclusion on accelerator R&D @ NCBJ

We deal with

low budget

old infrastructure

generation gap

but ...

We can do miracles!