EucARD Annual Meeting 25-27 April 2012, WUT Warsaw

WP10-SRF

"SC RF technology for higher intensity proton accelerators & higher energy electron linacs" O. Napoly (CEA)

WP10-SRF Task 'Patchwork'

			-	WP 10 Organisation, ver	sion 01.04.12
Task	Subtask	task / subtask leader	leading laboratory	participating laboratories	Task description
10,1		O. Napoly, O. Brunner	CEA	CEA, CERN	SRF Coordination and Communication
10,2		F. Peauger	CEA	CEA, CERN, CNRS,	SPL Cavities
	10.2.1	G. Orly	IPN-Orsay	CNRS	Design and fabrication of β = 0.65, 704 MHz elliptical cavity.
	10.2.2	F. Peauger	CEA	CEA	Design and fabrication of β = 1, 704 MHz elliptical cavity.
	10.2.3	V. Parma	CERN	CERN, CEA, CNRS	Study of interfaces between the cavity and the cryomodule.
10,3		P. McIntosh	STFC	STFC/Daresbury,UNIMAN,ULANC,CERN	Crab cavities
	10.3.1	F Zimmerman	CERN	CERN, ULANC	Design, build and test a single LHC crab cavity.
	10.3.2	R.M. Jones	UNIMAN	UNIMAN	Design, build and test a single CLIC crab cavity.
	10.3.3	A Dexter	ULANC	ULANC	Design, build and test a LLRF and synchronization systems.
10,4		S. Calatroni	CERN	CI, CEA, CERN, CNRS/IPNO, DESY, INFN-LNL, NCBJ	Thin Films
	10.4.1	S. Calatroni	CERN	INFN-LNL, CERN	Improve the Nb sputtering technology for low beta cavities.
	10.4.2	J. Sekutowicz	DESY	DESY, NCBJ	Perform arc sputtering of photo cathodes (Pb).
	10.4.3	R. Seviour	CI	CI, CEA, CERN, CNRS/IPNO, INFN-LNL	Research on new technologies for thin film depositing of superconductors for SC cavity applications.
10,5		R.M. Jones		DESY, UNIMAN, UROS	HOM Distribution
		N. Baboi	DESY	DESY	Development of HOM based beam position monitors (HOMBPM).
		R.M.Jones	UNIMAN	UNIMAN	Development of HOM Cavity Diagnostics and ERLP (HOMCD).
	10.5.3	U. van Rienen	UROS	UROS	Measurement of HOM Distributions and Geometrical Dependences (HOMDG).
10,6		M. Grecki	DESY	DESY, TUL, IPJ, WUT, IFJ-PAN	LLRF at FLASH
		T. Jezynski	DESY	DESY, TUL, WUT	Development of ATCA carrier boards with FPGA and DSP
		D. Makowski	TUL	TUL, DESY, WUT	Development of AMC and RTM modules required IO functionality
		M. Grecki		DESY, TUL, IFJ-PAN	ATCA implementation of cavity resonance control
	10.6.4	J. Szewinski	NCBJ	NCBJ, DESY	Development of beam based longitudinal feedbacks for the ATCA based LLRF system
10,7		J. Teichert	FZD	FZD, HZB	SCRF gun at ELBE
		T. Kamps	HZB	HZB, FZD	Slice diagnostics system
		R. Xiang	FZD	FZD	Improvement of preparation chamber for GaAs photo-cathodes
	10.7.3	J. Teichert	FZD	FZD, HZB	SCRF gun experimental tests
10,8		W. Kaabi	,	LAL	Coupler Development at LAL
		W. Kaabi		LAL	Cleaning studies on samples
	10.8.2	M.Lacroix	LAL-Orsay	LAL	Automation of coupler washing


WP10-SRF Fifteen Institutes

EUCARD

WP10-SRF 3rd Annual Review 29-30 March 2012, HZB, Berlin

45 Participants, including the 2 Coordinators + 6 Task Leaders (1 excused) 13/15 Partner Institutes represented

WP10-SRF 3rd Annual Review 29-30 March 2012, HZB, Berlin

orsten Kamps

(host a

nd photographer)

http://www.bessy.de/indico/conferenceDisplay.py?confld=380

30 talks, including 5 from PhD students

Ben Hall,	Lancaster University	T10.3
Ben Woolley,	Lancaster University	T10.3
Pei Zhang,	Manchester University, working at DESY	T10.5
Thomas Fligsen,	Rostock University	T10.5
André Arnold,	HZD Rossendorf	T10.7

WP10.1: Coordination and Communication

<u>Deliverable:</u>

Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.1.1	14	SRF web-site linked to the technical and administrative databases	Web-Site	Coordination	CEA, CERN	48	

Proposal to link to TTC Infrastructure database under construction

+ Database on SRF Accelerators in Europe, linked to the TTC server.

				SCRF Accelerators / I	Europe [29=5+11+4+9]					_]
Name	Particles	# cavities		Туре	Material	Gradient	Mode	Т	Status	Location	<u> </u>
HERA	electrons, positrons	16	500 MHz	β=1 elliptical 4-cell	Nb	4.0 MV/m	CW	4.2 K	de-commissioned	DESY	_
LEP200	electrons, positrons	16 272	352 MHz	β =1 elliptical 4-cell	Nb Nb/Cu	5 MV/m 7 MV/m	CW	4.5 K	de-commissioned	CERN	
LISA	electrons	4	500 MHz	β=1 elliptical 4-cell	Nb	6 MV/m	pulsed	4.2 K	de-commissioned	LN Frascati	
MACSE	electrons	5	1.5 GHz	β=1 elliptical 5-cell	Nb	10 MV/m	CW	1.8 K	de-commissioned	CEA-Saclay	
Tandem PA	ions	16 34	81 MHz 135 MHz	β =0.085 helix λ /2 β =0.085 helix λ	Nb	2.2 MV/m	CW	4.2 K	de-commissioned	CEA-Saclay	
ALICE	electrons	2 2	1.3 GHz	β=1 elliptical 9-cell β=1 elliptical 9-cell	Nb	3-5 MV/m 13.5 MV/m	pulsed	2 K	operation	Daresbury	
		2	80 MHz	β=0.0255 RFQ	Nb	2-3 MV/m					
ALDI	ions	12	80 MHz	β=0.055 QW	Nb	4 MV/m	CW	1 E V	operation	IN Lognaro	
ALPI	ions	50	160 MHz	β=0.13 QW	Pb/Cu	2.7 MV/m	CW	4.5 K	de-commissioned	LN Legnaro	
		58	160 MHz	β=0.13 QW	Nb/Cu	4.8 MV/m					
DIAMOND	electrons	2	500 MHz	β=1 elliptical 1-cell	Nb	6.5 MV/m	CW	4.5 K	operation	Oxford	
ELBE	electrons	1	1.3 GHz	β=1 elliptical 3½-cell	Nb	8 MV/m	CW	2 K	operation	HZDR	
LLDL	electrons	4	1.3 0112	β=1 elliptical 9-cell	ND	9 MV/m	CVV	2 K	operation	TIZDI	
ELETTRA	electrons	1	1.5 GHz	β=1 elliptical 2-cell	Nb	5 MV/m	CW	4.5 K	operation	Trieste	
FLASH	electrons	56 4	1.3 GHz 3.9 GHz	β =1 elliptical 9-cell	Nb	20-30 MV/m 14.5 MV/m	pulsed	2 K	operation	DESY	
ISOLDE	ions	12 20	101 MHz	β=0.063 QW β=0.103 QW	Nb/Cu	6 MV/m	CW	4.5 K	operation	CERN	
LHC	protons, ions	16	400 MHz	β =1 elliptical 1-cell	Nb/Cu	6 MV/m	CW	4.5 K	operation	CERN	
S-DALINAC	electrons	1 1	3 GHz	β =0.85 elliptical 2-cell β =1 elliptical 5-cell	Nb	5 MV/m 5 MV/m	CW	2 K	operation	Darmstadt	<u>C</u>
		10		β=1 elliptical 20-cell		5 MV/m					
SLS	electrons	1	1.5 GHz	β=1 elliptical 2-cell	Nb	5 MV/m	CW	4.5 K	operation	PSI	
SOLEIL	electrons	4	352 MHz	β=1 elliptical 1-cell	Nb/Cu	6 MV/m	CW	4.2 K	operation	SOLEIL	
B <i>ERL</i> inPro	electrons	1 3 3	1.3 GHz	β =1 elliptical 1½-cell β =1 elliptical 2-cell β =1 elliptical 7-cell	Nb	20 MV/m 18 MV/m	CW	2 K	construction	HZB	
E-XFEL	electrons	808 8	1.3 GHz 3.9 GHz	β =1 elliptical 9-cell	Nb	24 MV/m 15 MV/m	pulsed	2 K	construction	Hamburg	
IFMIF-EVEDA	D+	8	175 MHz	β=0.094 HW	Nb	4.5 MV/m	CW	4.5 K	construction	Rokkasho	1
		12		β=0.07 QW		6.5 MV/m					1
SPIRAL2	D+, ions	14	88 MHz	β=0.12 QW	Nb	6.5 MV/m	CW	4.2 K	construction	GANIL	
		28	352 MHz	β =0.5 double spoke		8 MV/m					i i
ESS	protons	64	704 MHz	β=0.7 elliptical 5-cell	Nb	15.5 MV/m	pulsed	4.5 K	design	Lund	
		112	704 MHz	β=0.9 elliptical 5-cell		18.2 MV/m			U U		
-		16	176 MHz	β=0.009 HW		4.7 MV/m					
		56	176 MHz	β =0.015 HW		5.2 MV/m					
EURISOL	protons doutons	36	352 MHz	β=0.3 triple spoke	Nb	5.8 MV/m	0.4/	4.2.K	docian		
EURISUL	protons, deutons		704 MHz	β=0.47 elliptical 5-cell	Nb	MV/m	CW	4.2 K	design	-	
			704 MHz	β=0.65 elliptical 5-cell		MV/m					
		14	704 MHz	β=0.78 elliptical 5-cell		MV/m					
ILC 500	electrons, positrons	16 900	1.3 GHz	β=1 elliptical 9-cell	Nb	35 MV/m	pulsed	2 K	design	-	
LUNEX5	electrons	16	1.3 GHz	β=1 elliptical 9-cell	Nb	25 MV/m	pulsed	2 K	design	SOLEIL	
LHeC ERL	electrons	944	721 MHz	β=1 elliptical 5-cell	Nb	20 MV/m	CW	2 K	design	CERN	
		8	176MHz	CH DTL		4 MV/m					
MYRRHA	protons	48	352 MHz	β =0.35 single spoke	Nb	6 MV/m	CW	2 K	design	SCK Mol	
	protono	34	704 MHz	β =0.47 elliptical 5-cell	.10	8 MV/m		- "	acsign		
		60	704 MHz	β=0.65 elliptical 5-cell		11 MV/m					
POLFEL	electrons	?	1.3 GHz	β=1 elliptical 9-cell	Nb	25 MV/m	pulsed	1.8 K	design	-	
SPL	protons, H-	60 192	704 MHz	β =0.65 elliptical 5-cell β =1 elliptical 5-cell	Nb	19 MV/m 25 MV/m	pulsed	?	design	CERN	
TRASCO	protons		704 MHz		Nb		pulsed		design	-	

SRF Accelerators in Europe or involving EU labs:

5 de-commissioned, 11 in operation, 4 in construction, 9 under design.

Participants in the task:	CEA/Saclay CERN IN2P3/IPN-Orsay	Target: Eacc=19 and 25 MV/m for respectively β=0.65 and $β=1$ in vertical cryostat
Objective:		
	v of 704.4 MHz sc cavities at	the specified performances (gradient)

><u>IPN/Orsay</u>: Design and fabrication of β =0.65 704 MHz 5-cells elliptical cavity equipped with a Titanium helium reservoir.

Preparation and assembly in clean room and test in vertical cryostat.

 \geq <u>CEA-Saclay</u>: Design and fabrication of β =1 704 MHz 5-cells elliptical cavity. Preparation of the cavity and assembly in clean room and test in vertical cryostat. Development of a vertical EP station and new HPR station. Upgrade of field-flatness set-up suited to the cavity size and weight

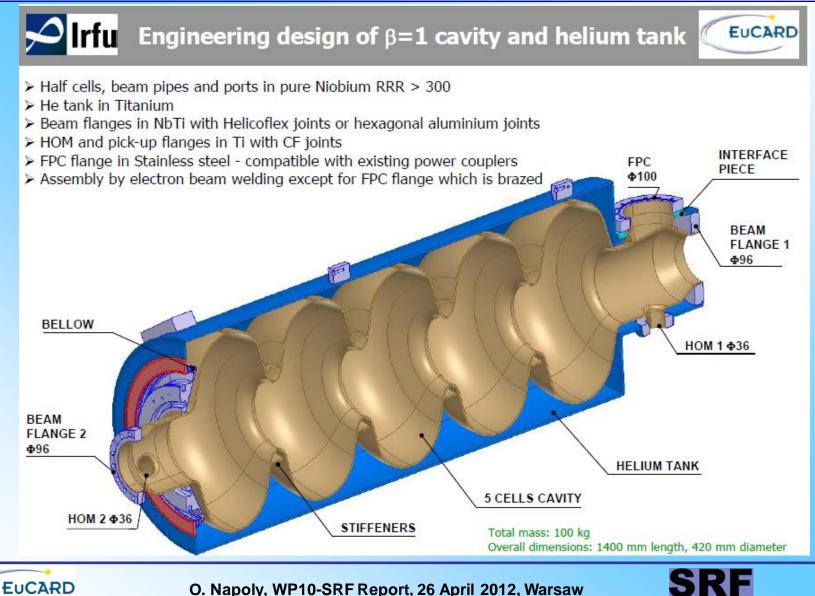
<u>Milestones #2:</u> Fabrication of cavities (P - M30) <u>Deliverable #1:</u> Results of SC proton cavity tests (R - M33)

> <u>CERN</u> : Study of interfaces between the cavity and the cryomodule.

Milestones #1: Definition of cryomodule interface (R - M12)

> Deliverables:

Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.2.1	5	Results of SC proton cavity tests (β = 1 and β = 0.65)	Report	SPL cavities	CEA, CNRS- IPNO	33	45


- Both cavities are under fabrication, delivery delayed to October 2012.
- Vertical EP and RF tests are expected in December 2012
- Results hopefully for the last Annual Meeting, M48

WP10.2: SC Cavities for Proton Linac

WP10.2: SC Cavities for Proton Linac

HORIZONTAL VS VERTICAL ELECTROPOLISHING

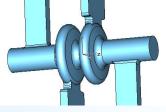
Pros:

- Good evacuation of gases (cavity half filled)
- Demonstrated efficiency
- Large range of parameters

Cons:

- Complicated process
- Rotary seals
- Switching of the cavity
- Low removal rate

Pros:


- Simple process
- Low floor surface
- Improved safety
- Higher removal rate

Cons:

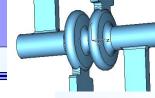
- Sensitive to fluid dynamics
- Proper parameters to be determined

Goals:

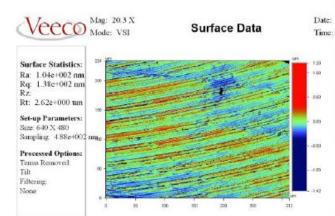
- Design, build and test a single LHC and CLIC crab cavity structure, including input coupler, mode couplers and tuners.
- Design, build and test a LLRF and synchronization system that meets the crab cavity phase and amplitude control specifications for LHC and CLIC.

Deliverables:

Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.3.1	7	LHC crab cavity final report	Report	Crab cavities	CERN	36	40
10.3.2	8	CLIC crab cavity final report	Report	Crab cavities	UNIMAN	36	40
10.3.3	9	LHC and CLIC LLRF final reports	Report	Crab cavities	ULANC	36	40

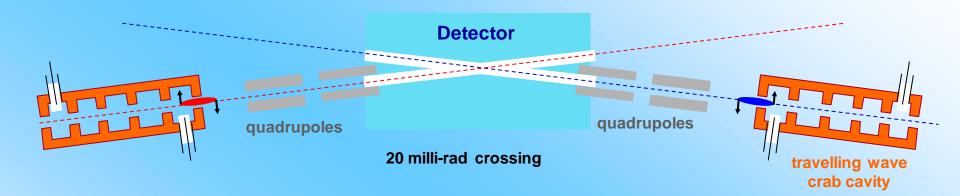

All deliverables have been extended and it is anticipated that all tasks for 10.3 can be completed by M40.


WP10.3: CLIC Crab Cavity

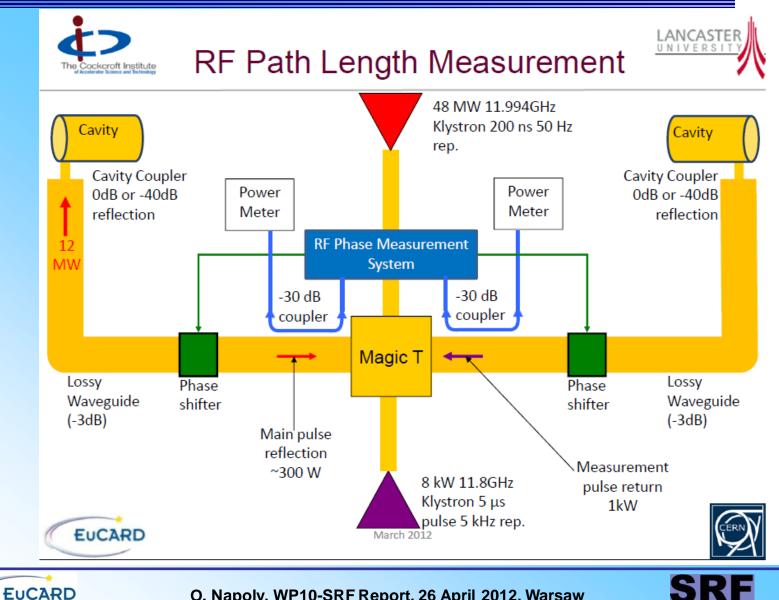


Prototype 1 – UK Built

The 1st CLIC crab cavity prototype has been manufactured by Shakespeare Engineering in the UK. Tolerance and surface roughness on single parts have been measured and are acceptable. RF testing is commencing next week.



WP10.3: CLIC Crab Cavity LLRF


Target max. Iuminosity loss fraction S	f (GHz)	σ _x (nm)	θ _c (rads)	φ _{rms} (deg)	∆t (fs)	Pulse Length (μs)
0.98	12.0	45	0.020	0.0188	4.4	0.156

So need RF path lengths identical to better than $c\Delta t = 1.3 \ \mu m$

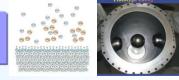
WP10.3: CLIC Crab Cavity LLRF

- CLIC LLRF: will complete reports for prototype phase measurement systems developed during EuCARD for September 2012.
- LHC LLRF: a short study of crab cavity LLRF system will undertaken starting May 2012 to compliment work undertaken during the initial stages of EuCARD.

> **Deliverables:**

Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.4.1	1	QE data for Pb/Nb deposited photo cathode samples	Report	Thin Films	DESY, NCBJ	12	14
10.4.4	4	New thin film techniques for SC cavities and photocathodes	Report	Thin Films	ULANC	30	42
10.4.2	10	RF measurements on thin film deposited QWR prototype	Report	Thin Films	CERN	36	48
10.4.3		Cold test results for the test cavities w/out the deposited lead photo cathode	Report	Thin Films	DESY	36	

D10.4.2: postpone to M48


D10.4.3: cf. Robert Nietubyc's Highlight Talk

D10.4.4: should sum up the coating techniques for SC cavities and photocathodes. Six more months will be welcome to assert the quality of the document.

WP10.4: QWR for HIE Isolde

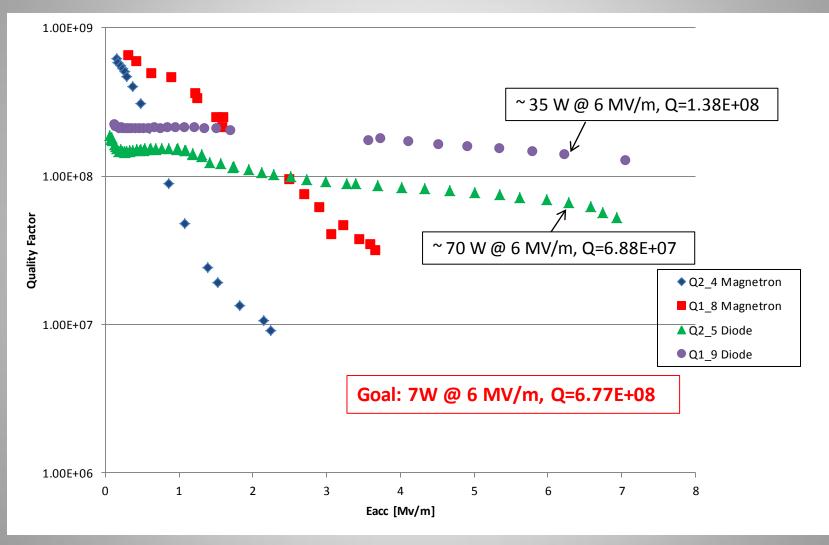
Quarter Wave Resonators (QWRs)


12 Low- β cavity

Nb\Cu technology

101.28	f (MHz)	101.28
50	Inner Cond. Diam (mm)	90
195	Outer Cond Diam (mm)	300
6	Designed Gradient (MV/m)	6
3.2x10 ⁸	Q ₀ for 6MV/m at 7W	5x10 ⁸
5.4	Epk/Eacc	5.6
80	Hpk/Eacc (Oe/MV/m)	96

20 High-β cavity


Cavity testing (since last EuCARD SRF)

	Q2.4	Q1.8	Q2.5	Q1.9	Q1.10
Туре	Magnetron	Magnetron	Diode	Diode	Diode
Coated	September 2011	November 2011	November 2011	January 2012	March 2012
Nominal pressure	8x10 ⁻³ mbar	8x10 ⁻³ mbar	1.3x10 ⁻¹ mbar	1.5x10 ⁻¹ mbar	1.6x10 ⁻¹ mbar
Nominal power	1 kW	2 kW	2 kW	4 kW	4 kW
Coating time	8h	4 h	16 h	8h	8h
RF test	Done	Done	Done without and with In seal of tuning plate	Done	Tbd
Comments	Baseline magnetron coating No sputter etching	No cooling 380°C NEG assisted pumping	No cooling 480°C NEG assisted pumping	No cooling 580°C NEG assisted pumping	No cooling 600°C NEG assisted pumping Helicoflex seals

RF Measurements 4.5K

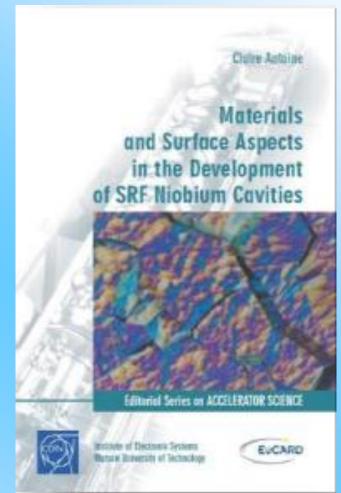
WP10.4: Thin Films

Coating

- Implement pre-heating of the cavity prior to coating.
- Follow up on the high-temperature coating option
- Next coating runs are focussed on increasing power
- Iterate on critical sputtering parameters
- Coating turnaround time can be as low as two weeks

The main goal is to finalize the coating parameters

- Goals set by the project:
 - on-specs by mid 2012
 - Production coatings start Q1 2013



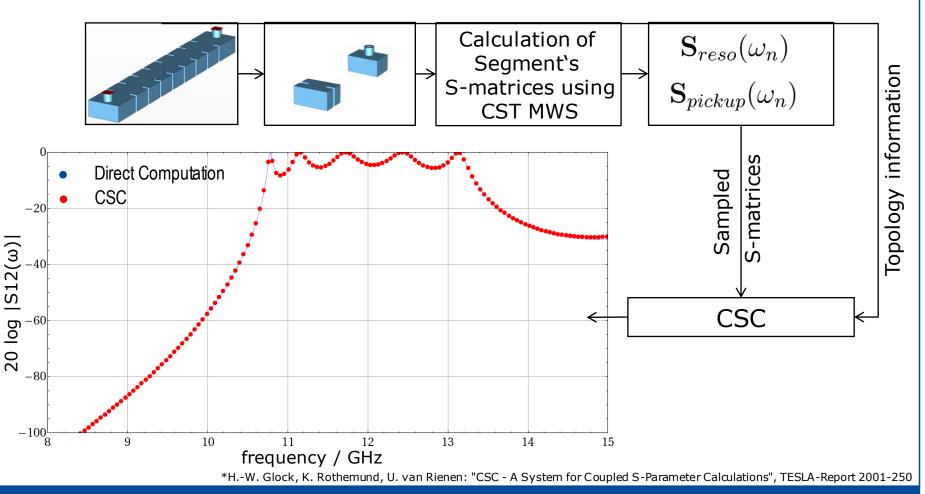
Magnetron sputtering facility at INFN/Legnaro

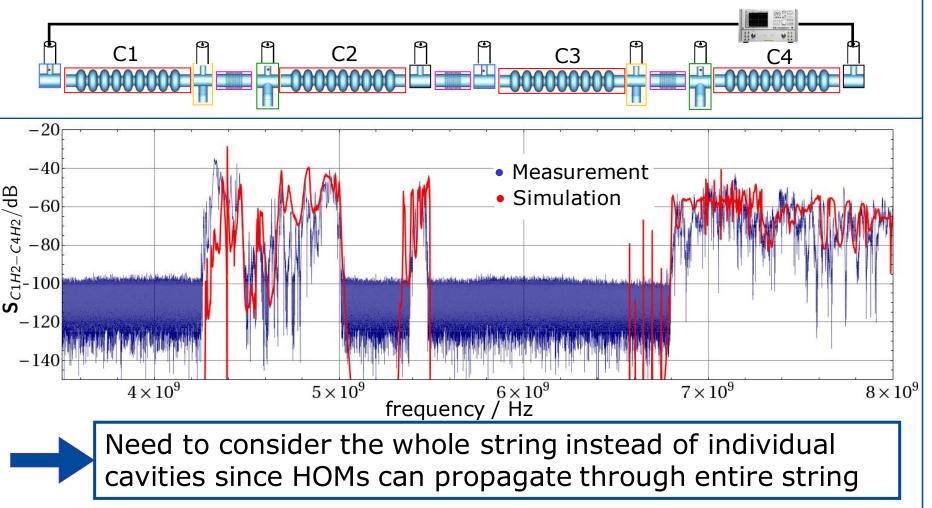
Monograph touching upon New Thin film Techniques

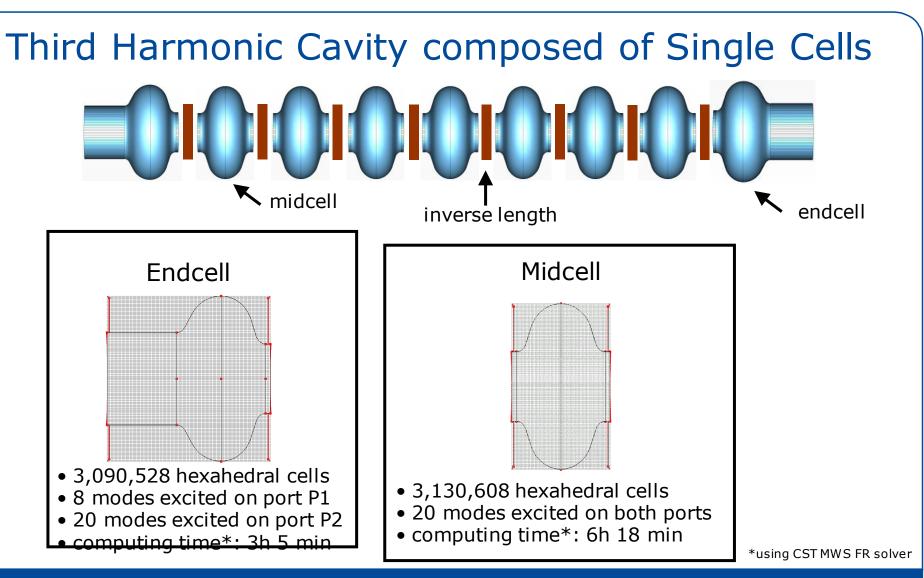
O. Napoly, WP10-SRF Report, 26 April 2012, Warsaw

Deliverables:

Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.5.2	12	Report on HOM experimental methods and code	Report	HOM distribution	UNIMAN	40	
10.5.1	15	HOM electronics and code to probe beam centring on 3.9 GHz cavities	Report	HOM distribution	DESY	48	

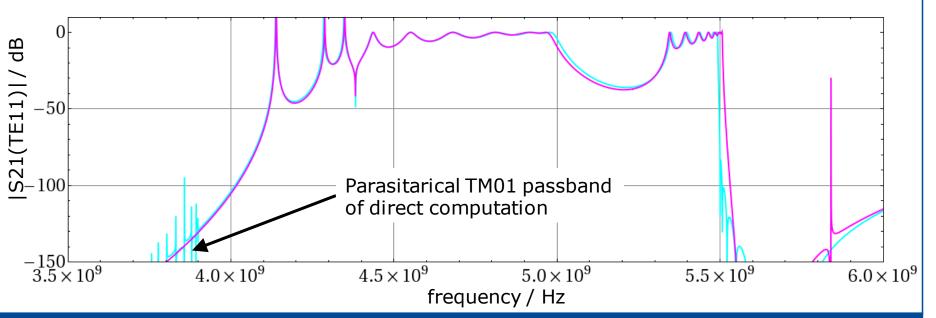

D10.5.1and D10.5.2 : Deliverables 10.5.1 and 10.5.2 are on schedule.


Example <u>Coupled</u> <u>S</u>-Parameter <u>Calculation</u>*

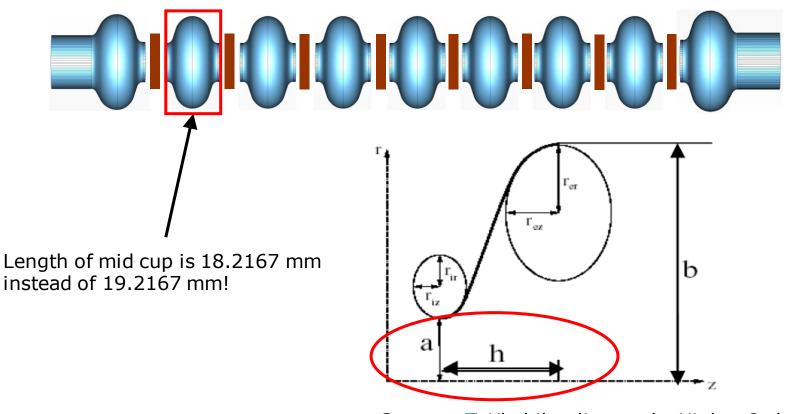


Recap last talk

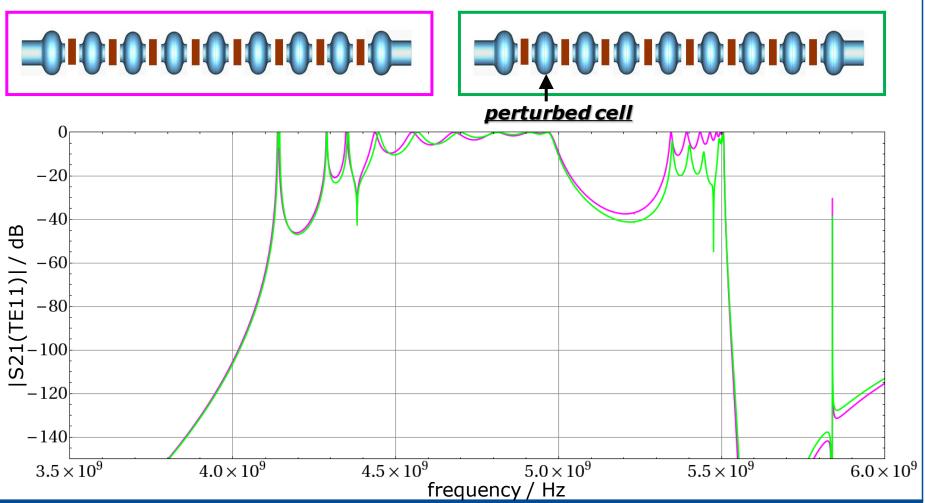
Model Validation ACC39



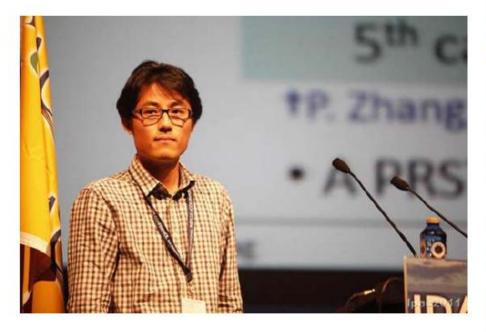
Comparison: Direct vs. Coupling


Direct computation with N=8,12 Mio hexahedral mesh cells, computing time FR solver: T=11h

CSC coupling of mid- and end cell elements (only TE11 mode is considered), computing time CSC: couple of seconds


Perturbation of a Single Cell in the Resonator

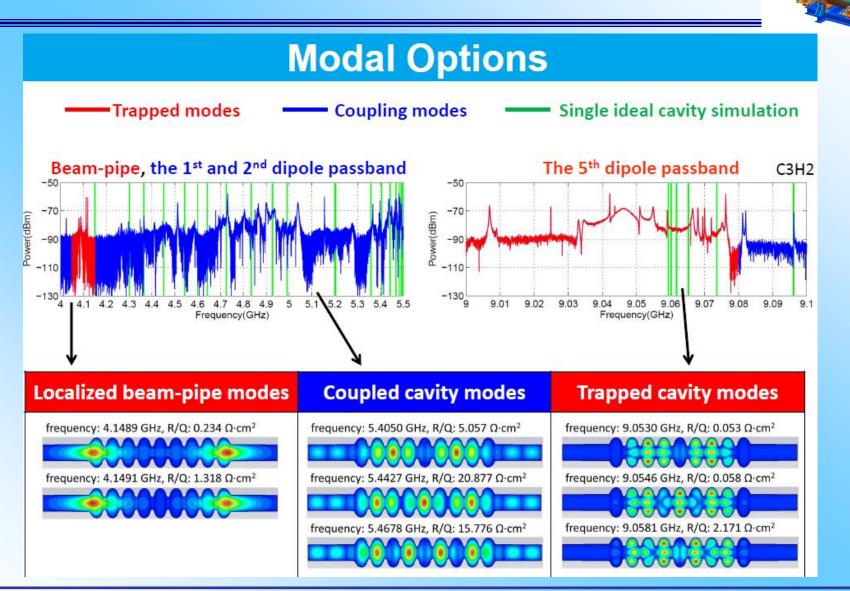
Source: T. Khabibouline et al.: Higher Order Modes of a 3rd Harmonic Cavity with an Increased End-cup Iris. TESLA-FEL 2003-01, May 2003



Influence of Pertubed Cell Position on HOM (1/4)

EPS-AG Thesis Prize

> Pei Zhang, a Cockcroft Institute Ph. D. student at the University of Manchester and working at DESY, has been selected for Ph.D. thesis prize at the IPAC 2011 in San Sebastian, Spain.


> This prize is awarded to a student registered for a PhD or diploma in accelerator physics or engineering or to a trainee accelerator physicist or engineer in the educational phase of their professional career, for the quality of work and promise for the future.

His contribution can be found in the SPMS session (THPPA00) in the conference (JACoW) website, cited as "Study of Beam Diagnostics with Trapped Modes in Third Harmonic Superconducting Cavities at FLASH

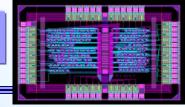
WP10.5: HOM Distribution

Electronics prototype tested with FLASH beam

Resolution	Beampipe	D1	D2	D5	
x (μm)	50 - 100	20 - 30	10 – 25	40 – 50	
y (μm)	100 - 150	40 - 60	30 – 40	40 – 80	

(1) BPM resolution: 20 μ m. (2) Resolution varies among couplers

Decision made for the final HOM electronics

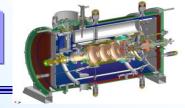

Band	Center frequency	Bandwidth	# of channels
D2	5460 MHz	100 MHz	2
D5	9058 MHz	40MHz	6

- Final electronics is being built
- Analog module: **‡ Fermilab** Digital module:
- :

- Expected by the end of 2012
- Next step
- HOMBPM performance study and calibration stability

Deliverables:

Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.6.1	13	Report on system test and performance	Report	LLRF at FLASH	DESY	42	48

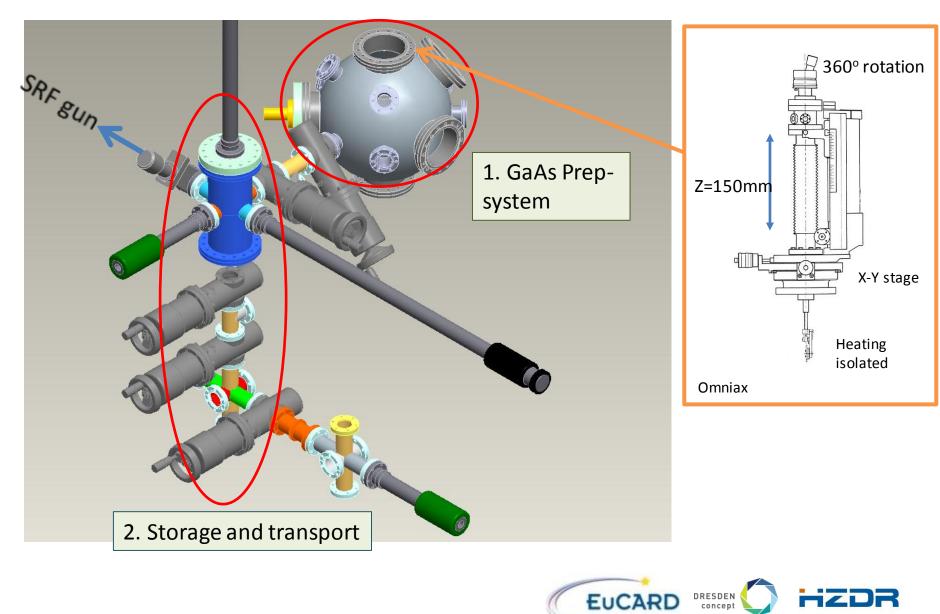

O. Napoly, WP10-SRF Report, 26 April 2012, Warsaw

M10.6.1: The complete test and report shifted to M48

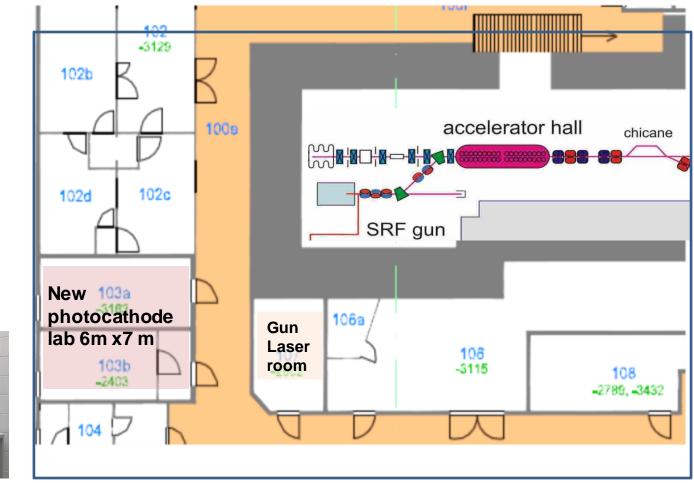
cf. M. Grecki and K. Czuba's Highlight Talk

Deliverables:

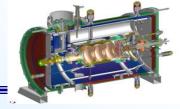
Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.7.1	2	Results of slice measurements	Report	SCRF Gun	FZD, HZB	24	26
10.7.2	6	Results for GaAs photocathodes	Report	SCRF Gun	FZD, HZB	33	48


D10.7.2 : The situation for the GaAs photo cathode is unsatisfactory. The first preparation system, small and mainly assembled of standard vacuum components, did not deliver good results. Since end of 2011, focus is on a new preparation system.

Postpone the date for D10.7.2 to month 48.

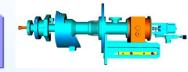


1. New preparation chamber / transfer system


Member of the Helmholtz Association

New laboratory for GaAs preparation system

EUCARD DRESDEN CONCEPT CONCEPT



Next Steps:

- Finish GaAs preparation chamber (Summer 2012)
- Vacuum test in the new laboratory
- Bulk GaAs activation experiments (End of 2012)
- Optimize transfer system
- Test activated-bulk-GaAs in SRF gun
- QE, life time, dark current, thermal emittance.....

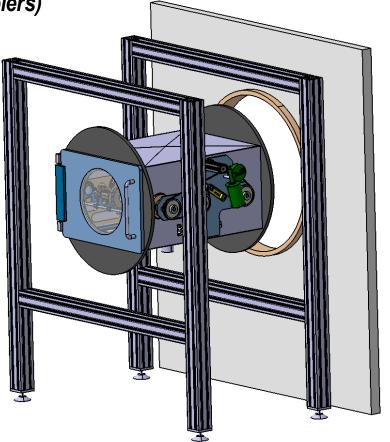
Deliverables:

Ref.	N°	Deliverable Name	Deliverable Type	Task 🖵	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.8.1	3	Test and operation of the coupler preparation procedure	Report	Coupler Development	CNRS-LAL	24	48

D10.8.1 : The report for results and analysis must be shifted to the end of EuCARD program (M48).

A.L.I.C.E.

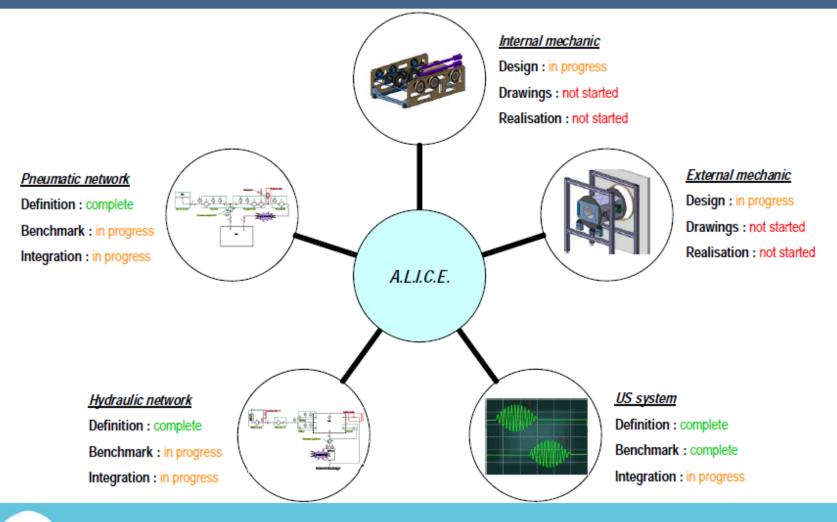
Automate de Lavage Integré pour Coupleurs Electromagnétiques (Integrated Washing-Drying Robot for RF Couplers)


EUCARD

Who is A.L.I.C.E ?

- A.L.I.C.E.'s technical functions
- Airlock function
- US Cleaning function
- Rinsing function
- Drying function
- A.L.I.C.E.'s overview

How is A.L.I.C.E.?


• A.L.I.C.E.'s progress

WP10.8: RF Coupler Cleaning

A.L.I.C.E. overview

WP10-SRF: Fifteen Deliverables

Ref.	N°	Deliverable Name	Deliverable Type	Task	Delivered by Contractor (s)	Planned (in months)	Achieved (in months)
10.4.1	1	QE data for Pb/Nb deposited photo cathode samples	Report	Thin Films	DESY, NCBJ	12	14
10.7.1	2	Results of slice measurements	Report	SCRF Gun	FZD, HZB	24	26
10.8.1	3	Test and operation of the coupler preparation procedure	Report	Coupler Development	CNRS-LAL	24	48
10.4.4	4	New thin film techniques for SC cavities and photocathodes	Report	Thin Films	ULANC	30	42
10.2.1	5	Results of SC proton cavity tests ($\beta = 1$ and $\beta = 0.65$)	Report	SPL cavities	CEA, CNRS- IPNO	33	45
10.7.2	6	Results for GaAs photocathodes	Report	SCRF Gun	FZD, HZB	33	48
10.3.1	7	LHC crab cavity final report	Report	Crab cavities	CERN	36	40
10.3.2	8	CLIC crab cavity final report	Report	Crab cavities	UNIMAN	36	40
10.3.3	9	LHC and CLIC LLRF final reports	Report	Crab cavities	ULANC	36	40
10.4.2	10	RF measurements on thin film deposited QWR prototype	Report	Thin Films	CERN	36	48
10.4.3	11	Cold test results for the test cavities w/out the deposited lead photo cathode	Report	Thin Films	DESY	36	36
10.5.2	12	Report on HOM experimental methods and code	Report	HOM distribution	UNIMAN	40	
10.6.1	13	Report on system test and performance	Report	LLRF at FLASH	DESY	42	48
10.1.1	14	SRF web-site linked to the technical and administrative databases	Web-Site	Coordination	CEA, CERN	48	
10.5.1	15	HOM electronics and code to probe beam centring on 3.9 GHz cavities	Report	HOM distribution	DESY	48	

Thank You for Your Attention

