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 Laser-plasma acceleration
ne/n0

● The rising edge of the laser ionizes the 
gas and creates a plasma.
● The laser pulse triggers electric fields 
~ 100 GV/m in its wake.
● Trapped electrons are accelerated up 
to ~ 100 MeV – 1 GeV within few mm.

v ~ c



  

Main properties :
● Up to 1 GeV electron energy.
● ~ 10-100 pC charge, fs duration, ΔE/E ~ 1-10%.
● Transverse size ~ μm, divergence ~ mrad

 εN ~ π.mm.mrad.

 Laser-plasma acceleration

~ 10 μm

ne/n0

Because of the large divergence, conventional 
emittance measurement techniques are not suitable. 



  

 Betatron emission in laser accelerator
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direction
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force

A. Rousse et al. Phys. Rev. Lett.  93, 135005 (2004)



  

 Betatron emission in laser accelerator

= p
2 /2 t 

Betatron oscillations for an adiabatic acceleration

Sinusoidal oscillations with a time varying
frequency

Plasma cavity = undulator



  

 Betatron emission in laser accelerator
Wiggler regime

Electron trajectory

K = γ ψ >> 1

X-ray properties



  

 Principle of emittance measurement
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 Principle of emittance measurement

 

 Symmetrized emittance = non-coherent upper limit of the 
normalized emittance.
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 Principle of emittance measurement

 

 Symmetrized emittance = non-coherent upper limit of the 
normalized emittance.

A precise measure requires a 
good stability and a control 

over the acceleration

 Electron spectrum 
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 X-ray spectrum
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 Colliding injection 

● Pump beam   accelerating structure.
● Injection beam      local injection.

J. Faure et al. Nature 444, 737-739 (2006)



  

 Colliding injection 

● Pump beam   accelerating structure.
● Injection beam      local injection.
● During the collision, some electrons are heated by the beat-wave 
ponderomotive force

J. Faure et al. Nature 444, 737-739 (2006)



  

 Colliding injection 

● Pump beam   accelerating structure.
● Injection beam      local injection.
● During the collision, some electrons are heated by the beat-wave 
ponderomotive force they gain enough energy to be trapped.

J. Faure et al. Nature 444, 737-739 (2006)



  

 Experimental setup

The acceleration length
 is tuned by moving 
the collision position.

S. Corde et al. Phys. Rev. Lett.  107, 255003 (2011) 



  

 First measurement : electron energy

● Charge ~ 25 pC
● Energy  [80,210] MeV

Energy (MeV)
Charge (pC)

S. Corde et al. Phys. Rev. Lett.  107, 255003 (2011) 



  

 Second measurement : X-ray critical energy

EC ∝N
1/27/43 /4

Good agreement between
model an experiment

validation of the method

Critical energy 
increases with γ.

S. Corde et al. Phys. Rev. Lett.  107, 255003 (2011) 



  

 Second measurement : X-ray critical energy

EC = 1.7±0.5 KeV   εN = (0.53 ± 0.36) α-3/2  π.mm.mrad

S. Corde et al. Phys. Rev. Lett.  107, 255003 (2011) 



  

 Third measurement : X-ray divergence 

∝N
1 /21/4−3/4

S. Corde et al. Phys. Rev. Lett.  107, 255003 (2011) 

divergence decreases when γ increases
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 Third measurement : X-ray divergence 

∝N
1 /21/4−3/4

The normalized divergence θγ3/4 increases 



  

 Influence of the angular momentum
Non-zero angular
momentum Lz

Φx ≠ Φy 

Simul. divergence for Lz=0 Simul. divergence for max. Lz



  

 Angular momentum growth
LZ(0)=0 and non-perfectly symmetrical fields 

F x=−m p
2 x /2

F y=−1m p
2 x /2

x=∫0

t
 p/2t dt

 y=∫0

t
 p1/2t dt

LZ= J x J y [1−sin  x− y−2 sin xy ]

=0.07



  

 Angular momentum growth

=0.06

For E = 260 MeV, γ3/4 θFWHM = 1900 ± 300 mrad 
εN = (1.7 ± 0.4) α-1/2  π.mm.mrad

A 4th measurement would be required to get Lz

assume that γ3/4 θFWHM is max. for E = 260 MeV



  

 An estimate of the emittance
 Spectrum  εN = (0.53 ± 0.36) α-3/2 π.mm.mrad
 Divergence   εN = (1.7 ± 0.4) α-1/2 π.mm.mrad
 Theory 0.25  α ≤  1

1.4  π.mm.mrad  εN  4.2  π.mm.mrad 
Most probable : α = 0.32 and  εN ≈ 3  π.mm.mrad 



  

 Outlook

Summary 
● Proof of principle experiment of betatron based 
emittance measurement.
● εN  <  4 π.mm.mrad.
● Method works also for higher electron energy.
● Potentially single shot.

Outlook 
● Reduce the error bars.
● Perform a 4th measurement to get LZ. 
● Theoretical study of angular momentum growth.



  



  

 Angular momentum growth

=0.06
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