

WP11 – ANAC

M. Biagini, on behalf of WP11 Task leaders EuCARD 3rd Annual Meeting Warsaw, April 25-27th, 2012

WP11 - Tasks

Task 11.1. ANAC Coordination and Communication (Coordinator M. Biagini, LNF - INFN)

- > Coordination and scheduling of the WP tasks
- Monitoring the work, informing the project management and participants within the JRA
- WP budget follow-up
- Task 11.2. Design of Interaction Regions for high luminosity colliders (Coordinator C. Milardi, LNF INFN)
 - Feasibility study of a new IR based on the Crab Waist concept for the upgraded KLOE experiment at DAΦNE.
 - Study the possible integration of the Crab Waist collision scheme into the LHC collider upgrade

Task 11.3. Upgrade of the EMMA FFAG Ring (Coordinator T.R. Edgecock, STFC)

- > Design, build and test the external diagnostics systems for EMMA
- Commission EMMA using the diagnostics and perform the necessary experiments to evaluate non-scaling optics for a variety of applications.
- Task 11.4. Instrumentations for novel accelerators (Coordinator V. Malka, LOA - CNRS)
 - Design, build and test of detectors for emittance measurements of electron beams delivered by laser plasma accelerators

Task 11.2.1 DAØNE IR

- This Subtask has accomplished all its Milestones and Deliverables
- Commissioning of the rings is not part of EuCARD scopes but the progresses are summarized here
- The commissioning of the collider for the KLOE experiment has had some delay due to several hardware faults (cooling system, power supplies, control system, water leakage from some magnets and a hole in one MRp wiggler)
- A vibration at the IP doublet has also been detected, measured and cured

Wiggler faults in the MRe (March 25th 2012)

Three out of four wigglers installed in the enring got seriously damaged due to a long term water leakage not detected due to a concomitant fault in the power supply board supervising ground fault occurrence.

DA Φ **NE Maximum Peak Luminosity so** far ...

lastLumDisplay.vi -	
last KLOE LUMINOSITY	
e-mA e+mA 930 719	Same but
1.52E+32	• (
RUNNING	

Same peak luminosity as in 2005, but •less bunches in collision

- (100)
- Iower currents

	DA DA DE upgrade SIDDHARTA (2009)	DA() NE KLOE (2005)
L _{peak} [cm ⁻² s ⁻¹]	4.53•10 ³² (5.0•10 ³²)	1.53•10 ³²
L _{∫day} [pb ⁻¹]	14.98	9.8
L _{J1 hour} [pb ⁻¹]	1.033	0.44
I- _{MAX} in collision [A]	1.52	1.4
I+ _{MAX} in collision [A]	1.0	1.2
N _{bunches}	105	111
ξ	0.044	0.025

Optics rematching

Main Rings optics has been re-matched. As a consequence :

- smoother injection with higher efficiency and lower radiation level
- reduced beam blow-up with the main and the opposite beam current

Clearing electrodes for e-cloud suppression

- The electrodes are behaving as expected and are suppressing the ecloud density in dipoles and wigglers. An even better effect is expected after replacing the electrodes power supplies
- Measurement of horizontal growth rates
- Increase in injected positron current (900 mA now)

Horizontal tune-shift due to e-cloud

Horizontal growth rate measurements

Turning off the electrodes the transverse vertical beam dimension increases

Power supplies must be replaced because their load impedance changes with the beam current

Vibrations at IP

- Lst year a random amplitude, 10.5 Hz vertical oscillation was detected on both beams, compatible with a vibration in the low-beta defocusing quadrupole → orbit deviation recorded by two BPMs installed in a symmetrical location with respect to the IP confirmed that the vibration source was π/2 in phase advance from the IP
- To overcome the effect four layers of viscous elastic material, total thickness 17 mm, have been inserted below the supports of the low-beta quadrupoles resulting in a ~50% reduction of the observed vibrations

Vertical orbit oscillation

Conclusions on $DA \Phi NE$ commissioning

- Peak luminosity now comparable with the maximum achieved at the end of the KLOE run in 2005
- At low currents the highest L_{spec} achieved exceeds by 3 times the best value measured during the past KLOE runs
- Maximum currents stored so far in collision are:
 - ≻ I⁻ ~ 1.3 A
 - ≻ I+ ~ 0.9 A
- Clearing electrodes are effective in keeping under control the e-cloud driven instabilities in the positron ring
- Vibrations at IP have been damped by 50%

Subtask 11.2.2 - Crab Waist for the LHC

- Initial delay due to difficulty of recruiting a fellow at CERN
- Two mitigations:
 - Contributions by external experts
 - Dmitry Shatilov (BINP) visiting Mikhail Zobov at INFN-LNF twice, in fall 2010 and winter 2011
 - Kazuhito Ohmi (KEK) visiting Frank Zimmermann at CERN twice, in summer 2010 and winter 2011
 - recruitment of doctoral student instead of fellow
 - Jose Abelleira started at CERN in November 2010

 D11.2.2: Study of an IR design for LHC upgrade, CERN, M36, March 2012 will be delayed to M48

Beam-beam studies

- Previous studies have shown that the Crab-Waist scheme becomes much less effective for round beams with respect to flat beams → bb simulations for flat beam option in LHC
- A special IR with beta function's ratio of 100 ($\beta_x/\beta_y = 1.36 \text{ m}/1.36 \text{ cm}$) at the IP and a local chromaticity correction is under study at CERN. A luminosity increase by a factor of 5-10 with respect to the nominal LHC luminosity can be achieved depending on the chosen beam crossing angle θ (see Table next slide)
- Numerical simulations and frequency map analysis (FMA) of bb interactions performed for all cases: switching ON crab waist sextupoles is very effective in suppression of the beam-beam resonances -> smaller footprint area and a considerable beam-beam resonance strength reduction
- FMA plots in two planes: in the plane of betatron tunes (footprints, left) and normalized betatron amplitudes (right). Colors comply with the diffusion index: blue → stable motion, red → stochastic

(D. Shatilov, M. Zobov)

LHC luminosity vs Piwinski's angle

heta,mrad	Φ	$1/\sqrt{1+\Phi^2}$	R	$L_0 R, 10^{34}$	ξ_x	ξ _y
1.0	1.8875	0.4682	0.2981	10.826	0.00792	0.00169
1.5	2.8312	0.3330	0.2417	8.7754	0.00406	0.00122
2.0	3.7749	0.2561	0.2019	7.3311	0.00242	0.00094
2.5	4.7187	0.2073	0.1728	6.2730	0.00159	0.00077
3.0	5.6624	0.1739	0.1506	5.4690	0.00113	0.00065

$$L = \frac{N^2 n_b f}{4\pi\sigma_x \sigma_y} \times R$$
$$R = \frac{L}{L_0} = \sqrt{\frac{2}{\pi}} a e^b K_0(b)$$
$$a = \frac{\beta_y^*}{\sqrt{2}\sigma_z}, \quad b = a^2 \left(1 + \Phi^2\right)$$
$$\Phi = \frac{\sigma_z \tan(\theta/2)}{\sigma_x}$$

$$\beta_x = 1.36m, \quad \beta_y = 1.36cm, \quad \varepsilon_n = 2.194 \,\mu mrad$$

 $\sigma_x = 20 \,\mu m, \quad \sigma_y = 2 \,\mu m, \quad \sigma_z = 7.55cm$
 $N = 3.4 \times 10^{11}, \quad n_b = 1404, \quad \gamma = 7461$

Angle = 1.0 mrad

Study of crab waist optics for the LHC

A new optics is being developed for the LHC:

- large Piwinski angle, to allow for much lower β_v^* and higher brilliance
- extremely-flat beams $\beta_x^* = 1.5 \text{ m}, \beta_y^* = 1.5 \text{ cm}$
- local vertical chromatic correction
- crab-waist collisions

Opposite gradient in the same element: double half quadrupole

Three sextupoles per side of IP for
vertical chromatic correction & cancellation of aberrations
crab-waist collisions

Details in WP11.2 talk "Towards an extremely-flat beam optics with large crossing angle for the LHC" by Jose Abelleira

Publications for Task 11.2.2

- Design status of the LHeC linac-ring interaction region. IPAC 2011
- Local chromatic correction scheme and crab-waist collisions for an ultra-low beta* at the LHC. IPAC 2012
- Final-focus optics for the LHeC electron beam line. IPAC 2012
- Final Focus designs for the L-R Electron Beam Line. LHeC note

Task 11.3 - EMMA FFAG ring commissioning

- EMMA commissioning completed in April 2011:
 - First non-scaling FFAG
- First ever demonstration of serpentine acceleration!
- Several integer resonances crossed during acceleration
- No apparent degradation in beam quality
- NS-FFAGs work (at least for relativistic particles)
- Full experimental programme started last Summer

EMMA Layout

EMMA Time Line

- 2007-2011 Construction
- March 2010 Injection line complete. First beam on 26th March
- 18th June 2010 Ring "complete" i.e. all sectors in place, but one not connected. 4-sector commissioning
- 22nd June Beam to end of 4-sectors
- July 2010 Ring construction complete
- Aug-Oct 2010 First commissioning per
- Feb 2011 Diagnostics line comp
- Feb-April 2011 Second commissioning

• EMMA is the proof-of-principle non-scaling FFAG

Construction was a challenge

- novel machine
- very compact: "...everything takes 5 times longer in EMMA...", Neil Bliss, project manager

Commissioning has been successful:

- EMMA works!
- Beam accelerated from 12 to 18 MeV/c in 6 turns
- Small orbit excursion ~10 mm
- Many resonances crossed, no observable growth in beam oscillation amplitude
- Long way to go: full experimental programme started
- Upgrades planned:
 - improve EMMA performance
 - learn more for applications

Task 11.3 Status

 D11.3.1: Results from the operation of EMMA using the new diagnostics M36 Done

Results published in Nature Physics in January 2012

Also presented in various meetings and IPAC'11

ORS:

o no longer part of task 3

work taken over by Huddersfield University (UK)

 D11.3.1: Results from the operation of EMMA using the new diagnostics, STFC, M36, March 2012 DONE BEFORE DEADLINE

Task 11.4 - Instrumentations for novel accelerators

- In Task 11.4 a special technique was developed for the measurements of highly divergent beams ("betatronic radiation")
- Theoretical work was needed to justify the choice of "betatronic radiation" to characterize this key parameter of the e-beam
- The beam emittance measurements were accomplished
- Published in "Controlled Betatron X-ray radiation from tunable optically injected electrons", S. Corde, K. Ta Phuoc, R. Fitour, J. Faure, A. Tafzi, J. P. Goddet, V. Malka, and A. Rousse, Phys. Rev. Lett. **107**, 255003 (2011).
- More details in C. Thaury's talk
- Deliverable 11.4.1 due M36 accomplished → Report written and submitted to Coordinator

WP11 Milestones & Deliverables

- M11.3.1: Requirements for electron beam diagnostics, LOA-CNRS, M2, May 2009 $\sqrt{}$
- M11.1.1: 1st annual ANAC review meeting, INFN, M12, March 2010 $\sqrt{}$
- M11.2.1: DAΦNE beam parameters definition for KLOE, INFN, M12, March 2010 $\sqrt{}$
- M11.3.2: Construction of the electron beam diagnostics completed, STFC, M14, May 2010 \checkmark
- M11.2.2: Compatibility of new IR scheme and LHC, CERN, M18, Sep. 2010 $\sqrt{}$
- M11.3.3: Commissioning of EMMA completed, STFC, M20, Nov. 2010 $\sqrt{}$
- M11.1.2: 2nd annual ANAC review meeting, INFN, M24, March 2011 $\, \sqrt{}$
- M11.4.1: Electron beam emittance meter finished, CNRS, M24, March 2011 $\sqrt{}$
- M11.1.3: 3rd annual ANAC review meeting, INFN, M36, March 2012 $\sqrt{}$
- M11.1.4: Final ANAC review meeting, INFN, M48, March 2013
- D11.2.1: DA ΦNE IR design for the upgraded KLOE detector, INFN, M24, March 2011 $\sqrt{\text{Report}}$
- D11.2.2: Study of an IR design for LHC upgrade, CERN, M36, March 2012 delayed
- D11.3.1: Results from the operation of EMMA using the new diagnostics, STFC, M36, March 2012 $\sqrt{\text{Report}}$
- D11.4.1: Preliminary electron beam emittance measurement report, CNRS, M36, March 2012 $\sqrt{\text{Report}}$
- D11.1.1: ANAC web-site linked to the technical and administrative databases, INFN, M48, March 2013

WP11 summary

- WP11 milestones and deliverables were all met on time or ahead of time, except for Subtask 11.2.2
- Task 11.1 has delivered D11.2.1 on time. Report published
- Subtask 11.2.2 had a delay due to missing recruitment of a fellowship, now solved. This work needs a further year so deliverable 11.2.2 was moved to end of the EuCARD project (March 2013)
- Task 11.3 has delivered D11.3.1 ahead of time (Summer 2011). Report published
- Task 11.4 has delivered D11.4.1 on time (March) 2012). Report ready for publication
- All the informations from task leaders for P2 report are in my hands 🙂