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The old story. . .
When having to describe soft and hard jets together, we need the
virtues of both fixed order and resummation, since

• ME accurate to fixed order far away from phase space
boundaries, but breaks down close to boundary, e.g. in
infrared region.

• PS constructed to work in collinear region, with some
improvements for soft gluon resummation.

⇒ Approaches (somewhat) complementory.
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boundaries, but breaks down close to boundary, e.g. in
infrared region.

• PS constructed to work in collinear region, with some
improvements for soft gluon resummation.

⇒ Approaches (somewhat) complementory.

• Just adding both results in massive double counting.
→ Use ME above a cut tMS, and PS below tMS.

• This introduces another problem: Cut dependence.
→ Apply identical weights to +1 jet and +0 jet ME and add
samples

• This means reweighting the matrix element with αs factors
(for running αs in the PS), PDF ratios (for backward
evolution) and no-emission probabilities (since there are no
emissions above the scale of the first emission). 2 / 16



One jet above ρc
ρ

z

tMS

ρ

(a) (b)
ρmax ρmax

z

Take (a) from +1 jet matrix element |MS+1
|
2
. Reweight with the PS

weight, i.e. count this state with weight
[

x1f1(x1, µ1)αs(µR) |MS+1
|
2
]

dΦME
1 × wPath ×

x0f0(x0,ρ0)
x1f1(x1,µ1)

× αs(ρ1)
αs(µR )

x1f1(x1,ρ1)
x0f0(x0,ρ1)

ΠS+0
(x0, ρ0, ρ1)ΠS+1

(x1, ρ1, ρc)

Take (b) from +0 jet matrix element |MS+0
|
2
, with one shower splitting,

i.e. with weight
[

x0f0(x0, µ0) |MS+0
|
2
]

dΦME
0 × x0f0(x0,ρ0)

x0f0(x0,µ0)

× αs(ρ1)
x1f1(x1,ρ1)
x0f0(x0,ρ1)

P
(

x0
x1

)

dΦPS
1 ΠS+0

(x0, ρ0, ρ1)ΠS+1
(x1, ρ1, ρc)



One jet above ρc

Combining this, the merged approximation to the inclusive cross
section is

dσME1PS = x0f0(x0, ρ0)
{

x1f1(x1,ρ1)
x0f0(x0,ρ1)

∣

∣MS+1,me

∣

∣

2
dΦME

1 Θ(t(S+1,me)− tMS)

wPathαs(ρ1)

ΠS+0,rec (x0, ρ0, ρ1)ΠS+1,me
(x1, ρ1, ρc)

+ x1f1(x1,ρ1)
x0f0(x0,ρ1)

∣

∣MS+0,me

∣

∣

2
dΦME

0

αs(ρ1)P
(

x0
x1

)

dΦPS
1 Θ(tMS − t(S+1,ps))

ΠS+0,me
(x0, ρ0, ρ1)ΠS+1,rec (x1, ρ1, ρc)

}
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Lessons from one jet above ρc

The dependence on the cut tMS vanishes if

∣

∣MS+1,me

∣

∣

2
dΦME

1 wPath =
∣

∣MS+0,me

∣

∣

2
dΦME

0 P
(

x0
x1

)

dΦPS
1 (1)

and

[

ΠS+0,rec (x0, ρ0, ρ1)ΠS+1,me
(x1, ρ1, ρc)

]

=
[

ΠS+0,me
(x0, ρ0, ρ1)ΠS+1,ps (x1, ρ1, ρc)

]

(2)

This means:

• For (1), make the PS splitting kernels and the PS phase space
resemble the ME as closely as possible.

• For (2), get state S+1 as correct as possible by using
(inverted) parton shower momentum mapping. Use identical
shower (routines!) to produce no-emission probabilities ΠS+i

.
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Two jets above ρc : Where the differences are. . .

ρ

z z z

tMS

ρ ρ ρ

(a) (b) (c) (d)
ρmax ρmax ρmax ρmax

z

(a) Taken from the ME +2 jet sample, no information on merging
scale needed

(b) Taken from the ME +1 jet sample, with a shower veto on the
first emission

(c) Taken from the ME +0 jet sample, with a shower veto on the
first emission

(d) Taken from the ME +0 jet sample, with a shower veto on the
first emission. In truncated showers taken from ME +1
sample.



Sum of (c) and (d) in Ckkw-l:

x0f0(x0, ρ0) |MS+0
|
2
dΦME

0

x1f1(x1,ρ1)
x0f0(x0,ρ1)

αs(ρ1)P
(

x0
x1

)

dΦPS
1 Θ(tMS − t(S+1))ΠS+0

(x0, ρ0, ρ1)

x2f2(x2,ρ2)
x1f1(x1,ρ2)

αs(ρ2)P
(

x1
x2

)

dΦPS
1′ ΠS+1

(x1, ρ1, ρ2)ΠS+2
(x2, ρ2, ρc)

Sum of (c) and (d) in the truncated showering approach:

x0f0(x0, ρ0) |MS+0
|
2
dΦME

0

x1f1(x1,ρ1)
x0f0(x0,ρ1)

αs(ρ1)P
(

x0
x1

)

dΦPS
1 Θ(tMS − t(S+1))ΠS+0

(x0, ρ0, ρ1)

x2f2(x2,ρ2)
x1f1(x1,ρ2)

αs(ρ2)P
(

x1
x2

)

dΦPS
1 Θ(tMS − t(S+2))ΠS+1

(x1, ρ1, ρ2)

ΠS+2
(x2, ρ2, ρc)

+ x0f0(x0, ρ0)
∣

∣MS+1′

∣

∣

2
dΦME

1 Θ(t(S+1′)− tMS)

wPathαs(ρ2)

x1f1(x1,ρ1)
x0f0(x0,ρ1)

αs(ρ1)P
TS

(

x0
x1

)

dΦTS
1 Θ(tMS − t(S+1))Π

TS
S+0

(x0, ρ0, ρ1)

ΠTS
S+1

(x1, ρ1, ρ2)ΠS+1′′
(x2, ρ2, ρc)



Lessons from two jets above ρc
• Cut dependence still cancels to accuracy of the shower if

[

ΠS+0,rec (x0, ρ0, ρ1)ΠS+1,rec (x1, ρ1, ρ2)ΠS+2,me
(x2, ρ2, ρc)

]

=
[

ΠS+0,rec (x0, ρ0, ρ1)ΠS+1,me
(x1, ρ1, ρ2)ΠS+2,ps (x2, ρ2, ρc)

]

=
[

ΠS+0,me
(x0, ρ0, ρ1)ΠS+1,ps (x1, ρ1, ρ2)ΠS+2,ps (x2, ρ2, ρc)

]

=
[

ΠTS
S+0,rec

(x0, ρ0, ρ1)Π
TS
S+1,ts

(x1, ρ1, ρ2)ΠS+1′′,me′
(x2, ρ2, ρc)

]

• “Accuracy of the shower” is determined by splitting kernels
AND phase space constraints.

• More samples ⇒ More tricky to reduce the cut dependence.

• Having many more paths allows for different strategies for
picking reclustered states ⇒ Might be used to minimise cut
dependence (?).

For me, the real question is: What do we want to do, i.e. what do
we call an “improvement”, and what do we call “unitarity
violation”?
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Some examples
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Comparison of two prescriptions of choosing the history for
e+e− → 3 jets:
ckkw-l: Choose probabilistically according to splitting kernels.
scale : Always choose history with lower reconstructed scale.
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Conclusions
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• In Pythia8, we’ve recently implemented CKKW-L merging.
. . . and saw unitarity violations due to limiting phase space.
. . . and found differences in treating subleading uncertainties.

• We believe that these uncertainties can be used to guide NLO
multi-jet merging, e.g.
. . . to have less unitarity violations at NLO.
. . . to use histories to construct exclusive NLO x-sections.
. . . to find the PS-O(αs)-term by comparing with

clustered states.

• At NLO, unitarity violation needs to be smaller (see Leifs talk)
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Backup slides
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k⊥ used as merging scale
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Figure: Transverse momentum of the first jet in W + 1 jet, in pp
collisions at ECM = 7000 GeV. Jet defined with k⊥ algorithm as
implemented in fastjet, with D = 0.4.
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Does rapidity as merging scale work?
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Figure: Transverse momentum and rapidity of the first jet in W + jets in
pp̄ collisions at ECM = 1960 GeV. Rapidity used as merging scale with
yMS = 1.0. Minimal cut p⊥1,min > 2 GeV applied. Jet defined with k⊥
algorithm as implemented in fastjet with D = 0.4. Plot produced with
CKKW-L implementation in Pythia8.
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Two jets above ρc
In the ME2PS approximation, the inclusive cross section is

dσME2PS = x0f0(x0, ρ0)
{

|MS+2
|
2
dΦME

2 Θ(t(S+2)− tMS)wPath,2αs(ρ1)αs(ρ2)
x1f1(x1,ρ1)
x0f0(x0,ρ1)

ΠS+0
(x0, ρ0, ρ1)

x2f2(x2,ρ2)
x1f1(x1,ρ2)

ΠS+1
(x1, ρ1, ρ2)ΠS+2

(x2, ρ2, ρc)

+ |MS+1
|
2
dΦME

1 Θ(t(S+1)− tMS)wPath,1αs(ρ1)
x1f1(x1,ρ1)
x0f0(x0,ρ1)

ΠS+0
(x0, ρ0, ρ1)

P
(

x1
x2

)

dΦPS
1′

x2f2(x2,ρ2)
x1f1(x1,ρ2)

ΠS+1
(x1, ρ1, ρ2)Θ(tMS − t(S+2))

ΠS+2
(x2, ρ2, ρc)

+ |MS+0
|
2
dΦME

0 αs(ρ1)αs(ρ2)

P
(

x0
x1

)

dΦPS
1

x1f1(x1,ρ1)
x0f0(x0,ρ1)

ΠS+0
(x0, ρ0, ρ1)Θ(tMS − t(S+1))

P
(

x1
x2

)

dΦPS
1′

x2f2(x2,ρ2)
x1f1(x1,ρ2)

ΠS+2
(x1, ρ1, ρ2)ΠS+2

(x2, ρ2, ρc)
}
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