MTA Plans and Results

Yağmur Torun

Illinois Institute of Technology/Fermilab

MICE cm32 Feb 10, 2012 – RAL

Of MICE & MuCool

MuCool

R&D program at Fermilab to develop ionization cooling components

mission:

- design, prototype and test components for ionization cooling
 - absorbers (LH2, solid LiH)
 - RF cavities
 - magnets
 - diagnostics
- carry out associated simulation and theoretical studies
- support system tests (MICE, future cooling experiments)

MICE

System test to demonstrate and measure cooling

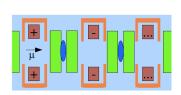
Useful reading

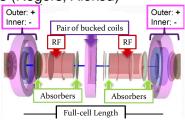
Serious degradation of RF cavity performance in strong external magnetic fields.

Currently main focus of MuCool.

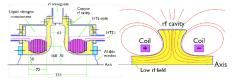
- Magnetic field effect first seen at Fermilab's Lab-G with a 6-cell 805-MHz cavity
 - J. Norem *et al.*, Phys. Rev. ST Accel. Beams 6 (2003) 072001
- Studied in more detail at MTA with 805-MHz pillbox cavity A. Moretti et al., Phys. Rev. ST Accel. Beams 8 (2005) 072001
- Various models proposed
 A. Hassanein et al., Phys. Rev. ST Accel. Beams 9 (2006) 062001
 - R. B. Palmer *et al.*, Phys. Rev. ST Accel. Beams 12 (2009) 031002

 Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)

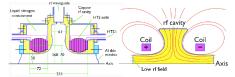



- Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
- Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)

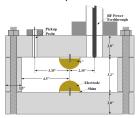
- Better materials: more robust against breakdown (melting point, energy loss, skin depth, thermal diffusion length, etc.)
- Surface processing: suppress field emission (superconducting RF techniques, coatings, atomic layer deposition)
- Shielding: iron, bucking coils (Rogers, Alekou)

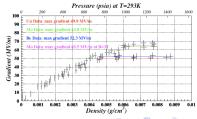


Magnetic insulation: modified cavity/coil designs to keep B⊥E on cavity surfaces (Palmer, Stratakis)



Loss of x 2 gradient advantage in pillbox geometry




Magnetic insulation: modified cavity/coil designs to keep B⊥E on cavity surfaces (Palmer, Stratakis)

Loss of x 2 gradient advantage in pillbox geometry

High-pressure gas: suppress breakdown by moderating electrons (Muons Inc., Yonehara et al.)

MuCool Test Area (MTA) – http://mice.iit.edu/mta/

Dedicated facility at the end of the Linac built to address

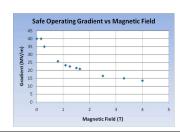
MuCool needs

- RF power (13 MW at 805 MHz, 4.5 MW at 201 MHz)
- Superconducting magnet (5 T solenoid)
- Large coupling coil under construction
- 805 and 201 MHz cavities
- Radiation detectors
- Cryogenic plant
- 400 MeV p beamline

MTA Diagnostics

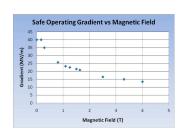
- RF forward, reflected, pickup signals
- Vacuum pressure
- Scintillator+PMT counters for X-ray rates, spectra
- Ionization chambers for radiation dose rates
- Spectrometer for cavity light analysis
- Acoustic sensors for spark detection (under development)
- Toroids for beam intensity
- BPM, MW and scintillator for beam profile

Summary of MuCool experimental program

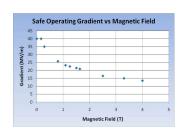

- trying to demonstrate a working solution to RF cavity operation in high external magnetic field for muon cooling
- major MAP milestone (and technical risk for MICE)
- big impact on cooling channel design and future system tests
- multipronged approach to cover maximum ground with available resources

Cavity		Outstanding issues	Proposed resolution	Experimental tests			
			Better materials	Mo, W, Be buttons			
nillho	pillbox			Be-walled 805-MHz cavity Electropolished buttons			
	^		Surface processing	201-MHz pillbox in B-field			
Vacuum		Breakdown and damage	Coatings	ALD-coated buttons			
ac ac		Breakdown and damage	Coatings	ALD-coated cavity			
	ngular			E⊥B box cavity			
reotarigatar			Magnetic insulation	E B box cavity			
open-	-iris		Wagnetie mediation	Modified cavity-coil geometry			
Pressurized		B-field/pressure effects	Materials tests	805-MHz 4-season cavity			
		Beam-induced ionization	Measure ionization lifetime	805-MHz cavity in beam			
		Frequency dependence	Test at different frequency	Pressurized 201-MHz cavity			

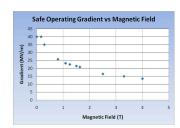
• 805 MHz pillbox cavity used to



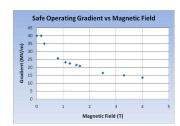
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient



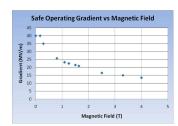
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows



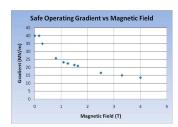
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well



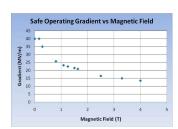
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings



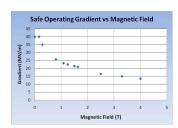
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising



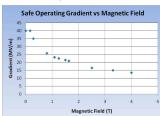
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again



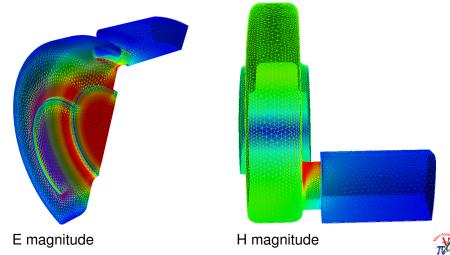
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)

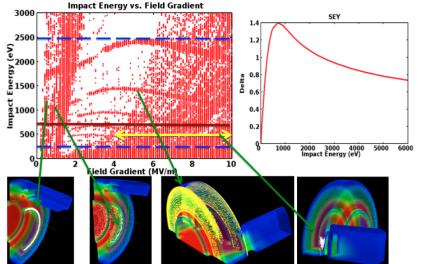


- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Ran with Be & Cu buttons (similar max gradient)



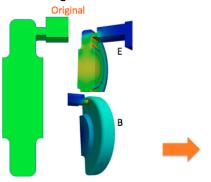
- 805 MHz pillbox cavity used to
 - quantify magnetic field dependence of gradient
 - establish feasibility of thin windows flat Cu windows unstable at high power, curved Cu and Be windows work well
 - test buttons with different materials/coatings
 Cu still weak link Be, Mo and W look promising
- Back after rebuild at JLab, tested again
- Poor performance (10 MV/m at 3T)
- Ran with Be & Cu buttons (similar max gradient)
- Improved version under design (SLAC)

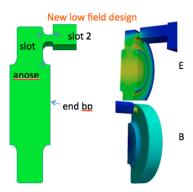



805 pillbox – Multipacting simulation – L. Ge, Z. Li

Track3P – 3T external field – gradient scan to 10 MV/m

805 pillbox – Multipacting simulation – L. Ge, Z. Li


Multipacting resonance vs gradient



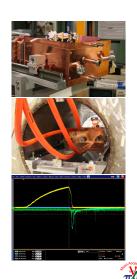
805 pillbox – L. Ge, Z. Li

New design with low surface field

Rounding and elliptical profile ⇒ factor 0.55/0.63 in surface E/H field

The service of the se					, 10,010 010 07 010 0 111 0 011 1010 0 011							
	slot height	slot rounding	slot rounding	anose	Emax		Emax anose	Emax end bp	Emax other	Hmax	slot angle	Qext
			2						surface			
Original	15.2/6.4	3.175	0	11.4	69.81		44.95	32.88	46.22	0.304	53	12899
New	14.5/6.4	9.5	3.5	15	39.03	33.31	38.71	32.95	34.67	0.195	48	14422

Box Cavity

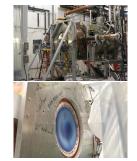

- Rectangular geometry chosen for test cavity to allow fast fabrication and simplify analysis
- Support system designed to rotate cavity pivoting around magnet center by up to 12°
- Rectangular coupling aperture with rounded edges and a coupling cell built to match the power coupler to waveguide
- Three CF flange tubes for rf pickups and optical diagnostics
- $f_0 = 805.3$ MHz, $Q_0 = 27.9 \times 10^3$, coupling factor 0.97
- YT et al., IPAC10

Box Cavity

- Operated in the MTA magnet Mar-Sep 2010
- Commissioned to 50 MV/m at B=0
- Took data at 0, \pm 1, 3, 4° wrt B axis (3T)
- Large effect seen at 3-4° (stable gradient down to about 25 MV/m)
- Some degradation even at ≤ 1° (33 MV/m)
- Visual inspection of interior, no obvious damage
- RF, optical and X-ray signals during sparks saved for analysis
- Magnetic insulation seems to work but not well enough to make up for lost shunt impedance

201 MHz MICE prototype cavity

• SRF-like processing (electropolished, etc.)


- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows

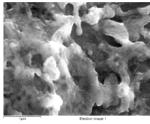
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field

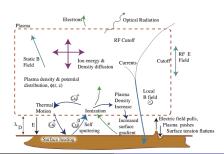
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)

- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE

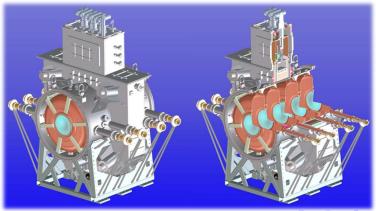
- SRF-like processing (electropolished, etc.)
- conditioned to design gradient very quickly
- ran successfully with thin curved Be windows
- operated in stray magnetic field reduced performance
- radiation output measured (MICE detector backgrounds)
- large diameter coil needed for field configuration closer to MICE
- No surface damage seen on cavity interior



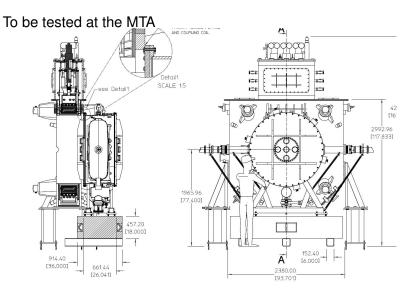


Evidence for some sparking in the coupler

Unipolar arc?



201 pillbox – MICE


Each RFCC module has

- 4 201-MHz cavities with Be windows
- large bore magnet (coupling coil)
- 10 cavities built, to be processed (EP, etc.) at LBNL

201 Single-cavity module (D. Li talk)

modular pillbox with replacable end walls

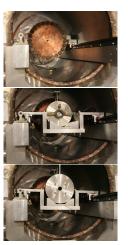
- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure

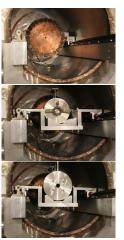
- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 29 MV/m in the MTA

- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 29 MV/m in the MTA

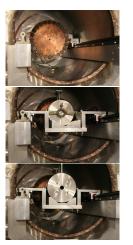
- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 29 MV/m in the MTA
- to be operated again in magnet (this month)

- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 29 MV/m in the MTA
- to be operated again in magnet (this month)
- looking into Be walls

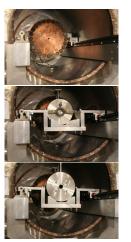

- modular pillbox with replacable end walls
- designed for both vacuum and high-pressure
- tested under vacuum to 29 MV/m in the MTA
- to be operated again in magnet (this month)
- looking into Be walls
- G. Kazakevich et al.. PAC11


HPRF cavity beam test (Yonehara)

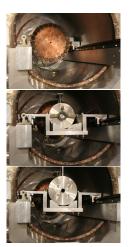
First beam experiment at MTA



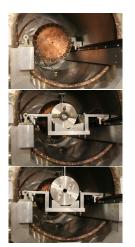
- First beam experiment at MTA
- Ran Jul-Aug 2011

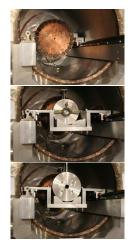


- First beam experiment at MTA
- Ran Jul-Aug 2011
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)

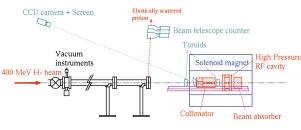


- First beam experiment at MTA
- Ran Jul-Aug 2011
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)

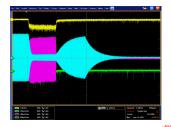

- First beam experiment at MTA
- Ran Jul-Aug 2011
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)
 - Intense muon bunch creates lots of electron-ion pairs



- First beam experiment at MTA
- Ran Jul-Aug 2011
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)
 - Intense muon bunch creates lots of electron-ion pairs
 - potentially shorting the RF cavity



- First beam experiment at MTA
- Ran Jul-Aug 2011
- HPRF previously shown to work in high B at the MTA (P. Hanlet et al., EPAC06)
- Goal: evaluate cavity loading from beam-induced plasma (M. Chung et al., IPAC10)
 - Intense muon bunch creates lots of electron-ion pairs
 - potentially shorting the RF cavity
 - may be mitigated by electronegative dopant gas
 (K. Yonehara et al., PAC09, IPAC10)

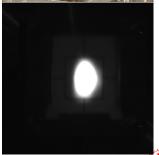


HPRF Beam Test

- 500 psi N2
- 500, 800 and 950 psi H2
- 8μ s beam, 2 intensities
- dopant test (N2, SF6)
- analysis in progress
- next test (with magnetic field, dopants) in a few weeks

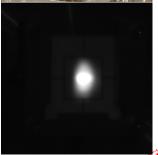
- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

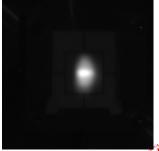

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

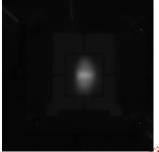
- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

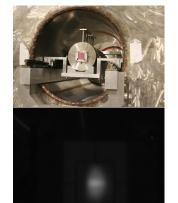

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

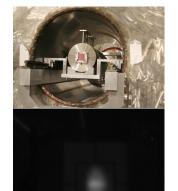

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators


- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators



- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators



- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

- First beam pulse to "emittance absorber" (beam stop 2) Feb 28
- Intensity about 1.8 × 10¹² protons/pulse at 1 pulse/min
- Scintillator screen upstream of collimator to measure beam spot
- Beamline and instrumentation upgraded
- O(10¹¹) protons through collimators

Magnetic Field Mapping

- Magnetic insulation depends strongly on angle
- MTA solenoid field never mapped in detail before
- Expect good alignment of magnetic axis with bore based on manufacturing tolerances but wanted to confirm

- Fiducial holes drilled during cavity fabrication
- Machined blocks to mount NIKHEF sensors
- Used cavity as mounting fixture data taken at corners
- Gaussmeter fixed in bore for normalization
- Bore mapped in detail with cart on rails

Students at the MTA (past year)

- Anastasia Belozertseva (U. Chicago) magnetic field mapping
- Last Feremenga (U. Chicago) magnetic field mapping
- Ben Freemire (IIT) HPRF beam test (thesis), everything else
- Giulia Collura (Torino) HPRF beam test
- Timofey Zolkin (U. Chicago) dark current instrumentation
- Peter Lane (IIT) acoustic sensors for detecting cavity sparks
- Raul Campos (NC State) beamline magnet support
- Ivan Orlov (Moscow State) HPRF beam test simulation
- Tom Mclaughlin (Valparaiso) magnet mapping, circulator installation
- Jessica Cenni (Pisa) dielectric loaded cavity
- Jared Gaynier (Kettering) circulator installation

MTA Schedule and Outlook

- Experimental program
 - HPRF cavity in beam 2nd test imminent
 - 805 MHz pillbox cavity with Be/Cu buttons complete
 - 201 MHz single cavity module (summer?)
 - further HPRF beam tests
 - 4-season cavity in B, with Be
 - ALD cavity under design
 - New 805 MHz pillbox
 - Be-wall pillbox
 - Dielectric-loaded cavity
- Infrastructure
 - beam commissioning, cryo plant upgrade, magnet field mapping complete
 - RF circulator/switch to be installed in Linac
 - coupling coil and single-cavity module in Hall
- Expect to demonstrate a working solution to RF cavity operation in high magnetic field within the next few years

