

RF Summary

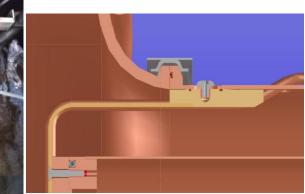
Michael S. Zisman Center for Beam Physics Accelerator & Fusion Research Division Lawrence Berkeley National Laboratory

> MICE Collaboration Meeting 32—RAL February 11, 2012

- \cdot Introduction
- \cdot RF cavity status
- \cdot RF power issues
- $\cdot\,\text{RF}$ control and monitoring
- \cdot Testing issues
- Schedule
- Summary

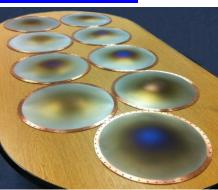
- \cdot RF system required for Steps 5 and 6
- Responsibility shared between two institutions
 - LBNL responsible for cavities [D. Li]
 - $_{\circ} \text{ as part of RFCC modules}$
 - Daresbury Lab responsible for RF power sources and distribution system
 [A. Moss]
 - refurbishing power sources (originally from LBNL and CERN)
 - ${\scriptstyle \circ}$ planning for installation of power systems in Hall
 - o planning coax distribution system from power source to cavity
- Shared responsibility implies need for careful attention to interface issues

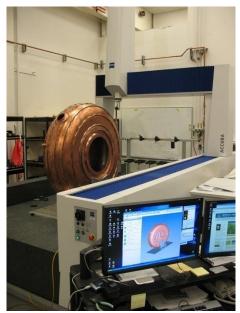
RF Cavity Status (1)



Complete or in progress

- TiN-coated Be windows (11) available for RFCC-1
- ceramic RF windows (10) delivered
- first set of 6 tuner arms in production at Fermilab
 6 actuators being fabricated
- input coupler design improved (based on results from prototype test)
- fixturing for electropolishing ready
 - awaiting ES&H approval to start (~1 month job to do 10 cavities)
- single-cavity test vessel completed


odelivery to Fermilab happens this month



RF Cavity Status (2)

To be done

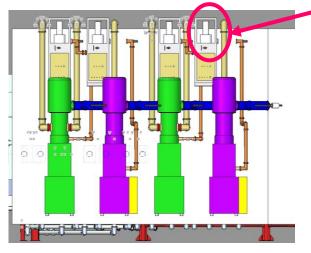
- physical (CMM) measurements to document cavity shape
 - few weeks work
- frequency measurements
 - $_{\rm o}\,all$ cavities will be deformed to reach central frequency of 201 MHz
- RF conditioning (without and with magnetic field \Rightarrow await first CC)
- \cdot No unresolved issues (yet)

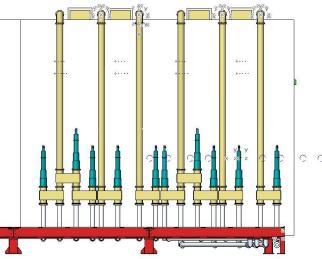
First amplifier tested to 1 MW

- test with new TH116 tube to 2 MW full power level remains to be done
 need to get this finished!
- worthwhile to understand whether output power could be higher
 - ${}_{\scriptscriptstyle 0}$ permits "headroom" for amplitude regulation
 - and expected loss of performance as tube ages
 - ${\scriptstyle \circ}$ accommodates transmission losses
- however, there is some risk involved in finding out
- Review committee (December '11) made a number of comments that merit our consideration
 - Moss to prepare response for comment by Tech Board
 low tube lifetime (15K hrs at ISIS)
 - and imminent lack of supplier for additional tubes
 - ${\scriptstyle \circ}\, \text{need}$ for headroom for control
 - maintenance challenge behind shield wall
 - amplifier sticks out above magnetic shield wall

Other review comments

- concern expressed about 4-in. coax power handling capability
 - ${\scriptstyle \circ}$ suggested testing system at MTA before ordering waveguide
- concern that specifications for RF system undefined $% \left({{{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]_{{\rm{c}}}}}} \right]}_{{\rm{c}}}}} \right)$
- suggested that adjustable phase shifters were unnecessary complication
- Review comments and proposed responses discussed
 - tube availability is a real issue, but not much can be done
 have 4 tubes now (£45K)
 - o have purchased spare glass tubes as insurance
 - tube degradation information at 50 Hz (vs. MICE 1 Hz)
 - odon't really know scaling, so some "exposure" here
 - not a go-no-go issue
 - control headroom not accounted for, nor losses in transmission thru coax
 not clear whether we need this control (see later)
 - could be we get less than 2 MW to cavity (\Rightarrow lower voltage)
 - or we cool cavities (not presently considered for routine operation)





· Proposed responses (cont'd)

— investigated removal of phase shifters

- $_{\rm o}$ looks sensible; get ~2% loss of acceleration compared with optimum phase
- ${\scriptstyle o}\xspace$ simplifies the plumbing
 - relieving maintenance concern
- o likely improves operational reliability
- cursory look at amplifier position indicates field should be modest
 o power supplies on mezzanine are another story

RF Power Issues (4)

Proposed responses (cont'd) 4-in. coax should be okay with slow-fill ramp much less reflected power (10%) standard Fermilab operation mode waiting for test not viewed as necessary delay in order puts \$ at risk reflected power potentially disrupts MTA program

\cdot Issues raised at this meeting

- check whether more bellows are needed to simplify coax installation
- check CAD model to make sure latest RFCC is used
- need to start on LLRF design
 - have DL people to do this
 - need help from LBNL (Doolittle)
- need better understanding of MICE requirements (timing; stability; ...)

- Most hardware needed for first system built and tested now
 - test to 2 MW in March 2012
 - on track for full test at RAL in Sept. 2013
- Desire to have second system available at DL *before* sending system 1 to RAL
 - at risk due to "cash-flow" problems

• need to define "drop-dead" date for purchases to stay off of critical path

20 kV PSU & Aux. rack front view

> Modulator (operational)

- Prudent to test full system after delivery to RAL
 - desirable to duplicate MTA single-cavity vacuum vessel at RAL
 will minimize disruptions to MTA
- \cdot Not obvious (to me) that test of coax at MTA is justified
- Prudent to carefully test amplifier above 2 MW
 - compensation for losses
 - headroom for control
 - measurements of amplitude and phase jitter are valuable
- MUST understand, document, and demonstrate specifications of system
 - needed for LLRF design
 - Li and Moss propose timing workshop to get requirements (before CM33)
 - need general RF parameter discussion/workshop
 - o phase and amplitude stability requirements
 - and means to achieve them

Planned schedule for RF power Current work in progress: - RF testing of System #1 with new 4616 and TH116 tubes Nov 11 to Mar 12 Future work (Step V): time-scales to be confirmed Assembly of CERN TH116 amplifier (System #2) ------ (July 2012) Test CERN amplifier at Daresbury (December 2012) Develop RF Control Systems — Pack & ship complete system #1 to RAL ------ (January 2013) Install RF System #1 in MICE Hall ----- (May 2013) Test complete RF system #1 at RAL (September 2013) - Construct & test 4616 #2 amplifier, power supply & controls - Construct & test TH116 #2 power supply & controls Test complete RF system #2 at DL Pack & ship system #2 to RAL — Install RF System #2 in MICE Hall Test complete RF system #2 at RAL

Tasks in red are required for TIARA (deadline in brackets)

- $\cdot\,\text{RF}$ cavity cleaning should begin shortly
 - about 1 month job
- Single-cavity vacuum vessel fabrication complete
 - delivery to Fermilab this month
 - o can test/process cavity to full field without B field
 - repeat with CC when ready
 - ${\scriptstyle \circ}$ tests tuner mechanism and thermal performance
 - $_{\rm o}\, {\rm could}\,\, {\rm test}\,\, {\rm LN-temperature}\,\, {\rm operation}$
 - risky, so do not use best cavity for this
 - open question: how many MICE cavities should be tested

Summary

Steady progress on all aspects of RF system

RF power system review very valuable

responses should be reviewed by Tech Board before finalizing
need to separate required testing from "feel-good" testing
explore risks/benefits of testing above 2 MW

Time to get serious about specifications

 timing workshop and detailed parameter discussions should happen prior to CM33

o important to have one RF group, not two half-groups

- Desirable to have complete second power system at DL before first system ships to RAL
- · Desirable to have second single-cavity test vessel at RAL