MAUS - Analysis Issues

Chris Rogers,
ASTeC,
Rutherford Appleton Laboratory

MAUS Items for Analysis

- Analysis group are interested in certain items in MAUS
- Data structure + representation
- Interface to analysis
- Routines for generating Monte Carlo data sets
- Used for doing truth vs recon studies
- Analysis group owns certain items in MAUS
- Global reconstruction
- Cooling channel geometry
- Online tools for tuning the accelerator
- Go through these one by one

Data Representation

- Data currently represented in json
- No way to enforce any structure
- Developers can e.g. change the data structure during reconstruction
- No way to enforce conventions
" Like "all Space Points should have (x,y,z,time) field"
- Some concerns over file size, access speed
- Can probably be addressed using native json, e.g. use some compression routine
- Naturally leads away from good practice - encapsulation, etc
- Propose using a ROOT data tree
- More conventional
- Maintain json functionality

Data Structure

- Active discussion of how data is structured in MAUS
- Do we split into particle events after unpacking?
- Do we split into particle events after detector reconstructions?
- Do we group by reconstruction "stage" or by detector
- Needs to be closed out and implemented by March run
- Looks potentially tight
- Non-controversial
- Add some metadata to the structure e.g. what run, what configuration, etc...

Batch Production

Propose a batch production job for MC and Reconstruction

- After a stage of settling analysis users won't be interested in details of this or that reconstruction routine
- Nice to have "official" recon data sets for analysis
- Will be done on GRID
- Automatically trigger as data is taken
- Use a reference version which may not be the latest - chosen by analysis group
- Rerun over data sets for new code version/calibration/etc can be requested by analysis group
- Needs (by mid-March):
- GRID setup - okay
- Input beam (next slide) - unlikely, workaround possible
- Geometry import - at risk
- Digitisation of TOF and other detectors - okay
- ROOT IO and data structure - at risk

Input Beam (g4bl)

- I think we use G4BL for input beam to batch production
- Need reasonable rate and time distribution
- For multiparticle effects (pile up, dead time)
- For tracker dead time model
- Extract rate from GVA1
- Fit to binomial distribution?
- Extract time distribution in each spill from fit to TOF0 t
- Fit to some exponential distribution? Saw tooth?
- Means we need to do reconstruction job and then use reconstructed GVA1 and TOF0 to do the Monte Carlo
- Circular dependency is unpleasant
- Use recon as input to MC which is used to understand recon... urg...
- Is there a better way?

Geometry Responsibility

- We have a set of routines for pulling geometry from a reduced CAD model of MICE
- It needs someone to check that the geometry physics is correct
- Detectors are responsible for checking that their geometry is correct
- Beamline expert is responsible for checking geometry and fields in beamline is correct
- Analysis group is responsible for checking cooling channel geometry and fields are correct
- Geometry release cycle goes like
- CAD release from Jason Tarrant
- Converted into Geant4 readable and uploaded to ConfigDB
- Checked by experts
- Tagged as a release of new geometry
- First attempt will follow survey being taken right now

Global Recon

- We have some set of measured space points (TOF), tracks (tracker), Light yields (EMR, KL, Ckov) with some set of errors
- How do we tie these things together?
- Two somewhat separate things:
- Track fitting
- PID

Basic specification

- We seek to get the following variables
- x, y, z, time
- px, py, pz, energy
- Preferred pid (gives charge, mass, etc)
- On user-defined planes - typically spacial planes, probably not z-planes
- Engineering geometry has \boldsymbol{x} as the beam axis
- We seek errors
- Covariance matrix of errors in (x, y, time, px, py, energy)
- E.g. say we know x exactly but px we have some error
- Propagate that measurement and we find we introduce uncertainty in x
- In fact there is a correlation between the x-px uncertainty
- Encode as a "covariance matrix"
- p(electron), $p($ muon $), p(p i o n) ?$ sigma(mass)? Not sure how to write down error in pid

Track/Error propagation

- We can already do Runge Kutta through arbitrary field maps, effer using G4 or custom tracking routines
- We can already calculate transfer matrices through arbitrary field maps
- Numerical differentiation of the tracking
- Generate a few different tracks
- Do $u_{\text {out }}=\mathrm{M}_{\text {in }}$
- We can use G4 to calculate $u_{\text {out }}$ from $u_{\text {in }}$
- We can solve as a simultaneous equation for \mathbf{M}
- Second order correction implemented and works
- Direct integration not implemented but could be
- All implemented in Optics routines
- Needs significant clean up and testing

Next Steps

- Specification document is in progress
- Aim to have first draft ready next week at software workshop
- Definition of data structure
- Definition of class structure
- We already have some optics infrastructure in place, currently in a tidy-up phase
- Seek comments early and often
- I am a novice - analysis experts in MICE have done it all before

Optics Tool

- Request was made for a light weight tool to evolve beam envelópes for use in control room
- Propose following tool
- (powerpoint prototype of a GUI)
- Allows to define a set of magnet currents and input beam
- Then plot resultant beam envelope, momenta, etc down the accelerator
- Geometry shown is Stage 6 geometry
- In principle we should be able to handle any geometry e.g. would hope to include Q4-9, etc
- Seek comments

$\Theta \sim \odot \quad \odot$

Beamline	
E1 (A)149.05 M1 (A) 149.05 SS (A) 222.01 M2 (A) 222.01 E2 (A) 	CC (A) 109.12
FC (A) 109.12	

$\left[\begin{array}{l}\text { Plot } \\ \begin{array}{l}\text { ordinate } \\ \checkmark \text { beta_perp } \\ \\ \checkmark\end{array} \\ \end{array}\right.$

Slider or text input to define beam z-position

Different beam parameterisations:

Θ

FIN

