MAUS – Analysis Issues

Chris Rogers, ASTeC, Rutherford Appleton Laboratory

MAUS Items for Analysis

- Analysis group are interested in certain items in MAUS
 - Data structure + representation
 - Interface to analysis
 - Routines for generating Monte Carlo data sets
 - Used for doing truth vs recon studies
- Analysis group owns certain items in MAUS
 - Global reconstruction
 - Cooling channel geometry
 - Online tools for tuning the accelerator
- Go through these one by one

Data Representation

- Data currently represented in json
 - No way to enforce any structure
 - Developers can e.g. change the data structure during reconstruction
 - No way to enforce conventions
 - Like "all Space Points should have (x,y,z,time) field"
 - Some concerns over file size, access speed
 - Can probably be addressed using native json, e.g. use some compression routine
 - Naturally leads away from good practice encapsulation, etc
- Propose using a ROOT data tree
 - More conventional
 - Maintain json functionality

Data Structure

- Active discussion of how data is structured in MAUS
- Do we split into particle events after unpacking?
- Do we split into particle events after detector reconstructions?
- Do we group by reconstruction "stage" or by detector
- Needs to be closed out and implemented by March run
 - Looks potentially tight
- Non-controversial
 - Add some metadata to the structure e.g. what run, what configuration, etc...

Batch Production

- Propose a batch production job for MC and Reconstruction
 - After a stage of settling analysis users won't be interested in details of this or that reconstruction routine
 - Nice to have "official" recon data sets for analysis
- Will be done on GRID
 - Automatically trigger as data is taken
 - Use a reference version which may not be the latest chosen by analysis group
 - Rerun over data sets for new code version/calibration/etc can be requested by analysis group
- Needs (by mid-March):
 - GRID setup okay
 - Input beam (next slide) unlikely, workaround possible
 - Geometry import at risk
 - Digitisation of TOF and other detectors okay
 - ROOT IO and data structure at risk

Input Beam (g4bl)

- I think we use G4BL for input beam to batch production
 - Need reasonable rate and time distribution
 - For multiparticle effects (pile up, dead time)
 - For tracker dead time model
 - Extract rate from GVA1
 - Fit to binomial distribution?
 - Extract time distribution in each spill from fit to TOF0 t
 - Fit to some exponential distribution? Saw tooth?
 - Means we need to do reconstruction job and then use reconstructed GVA1 and TOF0 to do the Monte Carlo
 - Circular dependency is unpleasant
 - Use recon as input to MC which is used to understand recon... urg...
 - Is there a better way?

Geometry Responsibility

- We have a set of routines for pulling geometry from a reduced CAD model of MICE
- It needs someone to check that the geometry physics is correct
 - Detectors are responsible for checking that their geometry is correct
 - Beamline expert is responsible for checking geometry and fields in beamline is correct
 - Analysis group is responsible for checking cooling channel geometry and fields are correct
- Geometry release cycle goes like
 - CAD release from Jason Tarrant
 - Converted into Geant4 readable and uploaded to ConfigDB
 - Checked by experts
 - Tagged as a release of new geometry
- First attempt will follow survey being taken right now

- We have some set of measured space points (TOF), tracks (tracker), Light yields (EMR, KL, Ckov) with some set of errors
- How do we tie these things together?
- Two somewhat separate things:
 - Track fitting
 - PID

Basic specification

- We seek to get the following variables
 - x, y, z, time
 - px, py, pz, energy
 - Preferred pid (gives charge, mass, etc)
 - On user-defined planes typically spacial planes, probably not z-planes
 - Engineering geometry has x as the beam axis
- We seek errors
 - Covariance matrix of errors in (x, y, time, px, py, energy)
 - E.g. say we know x exactly but px we have some error
 - Propagate that measurement and we find we introduce uncertainty in x
 - In fact there is a correlation between the x-px uncertainty
 - Encode as a "covariance matrix"
 - p(electron), p(muon), p(pion)? sigma(mass)? Not sure how to write down error in pid

Track/Error propagation

- We can already do Runge Kutta through arbitrary field maps, extended using G4 or custom tracking routines
- We can already calculate transfer matrices through arbitrary field maps
 - Numerical differentiation of the tracking
 - Generate a few different tracks
 - Do u_{out} = M u_{in}
 - We can use G4 to calculate u_{out} from u_{in}
 - We can solve as a simultaneous equation for M
 - Second order correction implemented and works
 - Direct integration not implemented but could be
- All implemented in Optics routines
 - Needs significant clean up and testing

Next Steps

- Specification document is in progress
 - Aim to have first draft ready next week at software workshop
- Definition of data structure
- Definition of class structure
 - We already have some optics infrastructure in place, currently in a tidy-up phase
- Seek comments early and often
 - I am a novice analysis experts in MICE have done it all before

Optics Tool

- Request was made for a light weight tool to evolve beam envelopes for use in control room
- Propose following tool
 - (powerpoint prototype of a GUI)
 - Allows to define a set of magnet currents and input beam
 - Then plot resultant beam envelope, momenta, etc down the accelerator
 - Geometry shown is Stage 6 geometry
 - In principle we should be able to handle any geometry e.g. would hope to include Q4-9, etc
- Seek comments

FIN