Introduction to **Charged-Particle Detectors**

Series	Chief Application	Starting Material	Range of Active Area (mm²)	Range of Active Thickness (µm)	Warranted Operating Temperature Range*	Diode Structure	Nominal Structure** Stopping Power of Wndows	
							Entrance	Exit
ULTRA†	High-resolution, high-efficiency alpha and beta spectroscopy	Si	25–3000	100-500	+60°C to -196°C (LN ₂)	Implanted Boron — N-type Si Implanted As Partial Depletion	500 Å Si	
ULTRA AS†	Ultra-low background high- efficiency alpha spectroscopy	Si	300–1200	100	+60°C to -196°C (LN ₂)	Implanted Boron — N-type Si Implanted As Partial Depletion	500 Å Si	
ILTRA CAM†	Alpha and beta continuous air monitoring (counting in adverse environment)	Si	300–2000	100 (Deeper detector requires special order)	+60°C to -196°C	Implanted Boron — N-type Si Implanted As Partial Depletion	N/A	
A	High-Resolution charged-particle spectroscopy (Nuclear Physics and Chemistry-Space Physics)	Si	25–450	1000–2000	+25°C to −30°C‡	Gold — N-type Si Aluminum Partial Depletion	800 Å Si	
В	Particle identification, telescopes of detectors (Nuclear Physics and Chemistry-Space Physics)	Si	50–450	150–2000	+25°C to -30°C‡	Gold — N-type Si Aluminum Total Depletion	800 Å Si	2250 Å \$
С	Backscattering from a collimated source or beam target-angular correlation measurements (Nuclear Physics)	Si	50–450	100–1000	25°C to -30°C‡	Gold — N-type Si Aluminum Partial Depletion	800 Å Si	2250 Å \$
D	Time-of-flight measurements with heavy ions (Nuclear Physics)	Si	10–450	15–100	10°C to 25°C	Gold — N-type Si Aluminum Total Depletion Planar	800 Å Si	2250 Å S
F	Heavy-ion spectroscopy (Nuclear Physics)	Si	100–900	≥60	+25°C to -30°C‡	Gold — N-type Si Aluminum Partial Depletion High Field Strength	800 Å Si	
L	Medium-energy proton (25 MeV) and other charged-particle energy spectroscopy	Si (Lithium compensated)	25–200	5000	+25°C to -196°C (LN₂)	Gold — Lithium Compensated P-type Si Lithium (diffused)	2000 Å Si	
R	Charged-particle spectroscopy operable in air and ambient light	Si	50–2000	100–500	+25°C to -30°C‡	Aluminum — P-type Si Gold Partial Depletion	2300 Ă Si	
Beta-X§	High-resolution beta spectroscopy	Si (Lithium compensated)	80	5000	–196°C (LN⊧)	Gold — Lithium Compensated — P-type Si Lithium (diffused)	2000 Ă Si	

† ULTRA series detectors are manufactured by ion-implantation silicon-dioxide passivated technologies. Versions bakeable at 200°C available on special order. ‡ Available with special cryogenic mount capable of cycling down to LN² temperature.

§ The Beta-X detector is offered in a sealed cryostat.

1M. Martini, T.A. McMath, I.L. Fowler, "The Effects of Operating Temperature on the Behavior of Semiconductor Detectors," IEEE Trans. on Nucl. Sci., Vol. NS-17, No. 3, pp. 139-148 (1970).

²C. Canali, M. Martini, G. Ottaviani, A. Alberigi-Quaranta, "Measurement of the Average Energy per Electron-Hole Pair Generation in Silicon between 5 and 320 K," IEEE Trans. on Nucl. Sci., Vol. NS-19, N4, pp. 9-19 (1972).

³Radiation Detection and Measurement (2nd Edition) by Glenn F. Knoll, New York: John Wiley and Sons, 1989, and Semiconductor Detectors, edited by G. Bertolini and A. Coche, North Holland Publishing Co., 1968 (distributed in the U.S. by American Elsevier Publishing Co.), New York City.

⁴F.S. Goulding and R.H. Pehl, "Semiconductor Detectors," Section IIIA, Nuclear Spectroscopy and Reactions, J. Cerny, Ed. Academic Press (1974).

www.ortec-online.com Tel. (865) 482-4411 • Fax (865) 483-0396 • ortec.info@ametek.com 801 South Illinois Ave., Oak Ridge, TN 37831-0895 U.S.A. For International Office Locations, Visit Our Website

Specifications subject to change 072911