Simulation on beam loss from radiative Bhabha process

Y. Funakoshi KEK

CROSS SECTION AND LIFETIME

Correction for cross section due to finite beam size

Differential cross section

Beam Loss Processes

	LER beam lifetime
Touschek effect	~10 min.
Beam-Gas Coulomb scattering	~30 min.
Radiative Bhabha	~30 min.

METHOD OF SIMULATION

Beam loss simulation (radiative Bhabha) recent update

- Physical aperture
 - QC1 (final focus quad) 10.5mm -> 13.5mm
 - Movable collimators for the purpose of reducing the Touschek and beam-gas background
- Lattice
 - Latest lattice: lerfqlc1633_3(LER), herfqlc5605(HER)
- Generator
 - BBbrems + beam sizes
 - Handmade generator to reproduce the energy loss distribution of the analytical formula + beam sizes
- Tracking simulation
 - Using SAD (1 turn tracking)

Beam Loss within 4m from IP One turn tracking with a large energy deviation (100 particles $\Delta p/p = 0, -1, ..., -99\%$)

Particles are lost, when they lose more than 75% of their energy.

Particles are lost, when they lose more than 60% of their energy.

Beam Loss within 4m from IP One turn tracking with a large energy deviation (100 particles $\Delta p/p = 0, -1, ..., -99\%$)

Particles are lost, when they lose more than 74% of their energy.

Particles are lost, when they lose more than 62% of their energy.

Maximum energy of survived particle at s = 4m

Effect of horizontal angle at IP

It is importance to consider the angular distribution of beam.

Maximum energy of survived particle at s = 4m

Effect of vertical angle at IP

IP machine parameters

	КЕКВ		SuperKEKB	
	LER	HER	LER	HER
ε _x	18nm	24nm	3.2	5.0
ε _γ	0.15nm	0.15nm	8.6pm	13.5pm
κ	0.83 %	0.62%	0.27%	0.25%
β_x^*	120cm	120cm	32mm	25mm
β _y *	5.9mm	5.9mm	0.27mm	0.31mm
σ_x^*	150µm	150µm	10µm	11µm
$\sigma_x^{'*}$	120µrad	120µrad	450µrad	320µrad
σ_y^*	0.94 μm	0.94µm	48nm	56nm
$\sigma_{y}^{'*}$	0.16mrad	0.16mrad	0.18mrad	0.22mrad
iBump horizontal offset		+/- 500µm		+/- 30µm?
iBump vertical offset		+/- 150µm		+/- 7.5µm?
iBump vertical angle		+/- 0.4mrad		+/- 0.4mrad?

Generator

- Handmade generator
 - Beam sizes
 - To reproduce the energy loss of the analytical formula
- BBbrems
 - Distribution of scattering angles are automatically included.
 - Spread of particle distribution corresponding to beam sizes is artificially added.
 - Two different sets of distributions
 - E_lab < 2 GeV (~80,000 events LER, ~27,000 events HER)
 - E_lab < 3 GeV (~1,800,000 events LER, 270,000 events HER) Simulation is on the way

Scattering angle distribution (BBbrems)

SIMULATION RESULTS

LER: Data of BBbrems (10/38 of total events)

CoordinateBeamLoss2012_2_6_18_2_39.dat

Within |z|<4m, Loss rate: 6.0 GHz Power loss: 0.56W Effective loss rate: 0.87GHz (4GeV)

Transverse coordinates of lost particles

Angular distribution of lost particles

Zero denotes outside of horizontal plane.

Energy distribution of lost particles

Radiative Bhabha LER

W 0.01 e+ 0.008 0.006 0.004 0.002 -0.5 -2 -1.5 -1 0 Loss position z[m]

Within |z|<4m, loss rate: 6.0 GHz(0~1.4GeV) loss wattage: 0.55 W

Loss wattage: we assume all energy of beam particle is deposited at the loss position.

Radiative Bhabha LER (contd.)

Horizontally lost at z=-1m

HER handmade generator

CoordinateBeamLoss2012_2_7_14_54_47.dat

Effective loss rate: 1.4GHz (7GeV)

HER: handmade generator $0.01 < \Delta E < 1$

CoordinateBeamLoss2012_2_7_14_54_47.dat

Transverse coordinates of lost particles -4m < s < 4m

Angular distribution of lost particles -4m < s < 4m

Energy distribution of initial events

Energy distribution of lost particles -4m < s < 4m

Energy distribution of lost particles -4m < s < 0m

The energy loss of the particles which are lost after almost one turn is very small.

Transverse coordinates of lost particles -4m < s < 0m

Angular distribution of lost particles -4m < s < 0m

H. Nakayama

Radiative Bhabha HER

Within |z|<4m, loss rate: 5.8 GHz(0~2GeV) loss wattage: 0.75 W

(Equivalent to 0.68GHz of 7GeV e-)

1-turn loss at z=-1.8m 0.72GHz, 0.8W

Loss wattage: we assume all energy of beam particle is deposited at the loss position.

H. Nakayama

Radiative Bhabha HER (contd.)

Horizontally lost at z=1.5m Vertically lost after 1 turn at z=-1.8m

HER: Beam loss with data of BBbrems

LER: Beam loss around the ring (lerfqlc_1633_3)

No COD (lerfqlc_1604.sad)

With COD $\Delta x'=5\sigma_x'\Delta y'=5\sigma_y'$ (lerfqlc_1604.sad)

 $0.2\% < \Delta E < 4\%$

 $4\% < \Delta E < 40\%$

40% < ∆E

LER iBump orbit $\Delta x' = 5\sigma_x' \Delta y' = 5\sigma_y'$

iBump is used for maintaining an optimum beam collision.

Summary

- The beam loss from radiative Bhabha process has been simulated.
- Latest results on beam loss in IR (± 4m from IP) are 0.56W (LER) and 1.56W (HER).
 - Coordinates of lost particles are transferred to Nakayama-san for Belle II background simulation.
- In case of HER, we found that the particles which loss 1 ~ 2% of their energy are lost after almost one turn travelling around the ring.
- Similar loss was found also in LER with large COD (closed orbit distortion).

Works to be done

- Tracking with larger number of samples
- To consider the method to reduce particle loss after one turn mainly in HER
- To check if there are multi-turn loss with beam-beam effects
- More systematic study on the effect of closed orbit distortion

2011年10月26日水曜日

2011年10月26日水曜日

5