SuperB Background Picture

E.Paoloni (INFN & Università di Pisa) for the SuperB Collaboration.

TALK OUTLINE

- The background model in Super*B*:
 - Our Geant 4 simulation tool: Bruno
 - Luminosity scaling backgrounds
 - Radiative Bhabha (beam strahlung) B³Rem
 - Pairs production (2 photons) : Diag36 + Bruno
 - Intensity scaling backgrounds
 - Touschek scattering: Star + Bruno
 - Beam gas scattering: Star + Bruno
 - Synchrotron radiation

Eugenio Paoloni

Rienna, Feb. 2012 the 9th

PRIMARIES PROPAGATION

- A Geant4 based program (code name Bruno, from Bruno Touschek) was created to simulate:
 - the transport of charged particles in the magnetic field of the final focus by numerical integration of the equation of motion
 - the magnetic field of the final focus is specified as a set of cylindrical regions in which the user prescribes the dipolar and quadrupolar components of the field
 - the passage of particles trough matter (machine elements)
 - the effect of the secondaries in the detector (energy releases, doses)
 - at present Bruno is not able to *reconstruct* the event
 - each subsystem perform a post processing that "digitize" the energy releases: rates evaluation, impact on detector performances, physics reach...

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

BRUNO DETECTOR MODEL

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

BRUNO: MACHINE MATERIAL

- Detailed model of the beam pipe sizes, cryostats and cold mass
- A 30 mm thick tungsten shield is put around the cryostat to protect the detectors from Radiative Bhabhas and Touschek

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

BACKGROUND CROSS SECTIONS

	Scattering Cross section	#Evt / crossing	Scattering Rate	
Beam Strahlung	~340 mbarn (Eγ/Ebeam > 1%)	~1400	0.34 THz	Luminosity lifetime driving term
Beam Strahlung	~150 mbarn (Eγ/Ebeam > 10%)	~630	0.15 THz	Losses "near" the IP
e ⁺ e ⁻ production	~7.3 mbarn	~31	7.3 GHz	
e ⁺ e ⁻ production (seen by L0 @ 1.4 cm coverage 300 mRad)	~ 80 µbarn	~0.34	80 MHz	Main SVT L0 Background
Elastic Bhabha	O(10 ⁻⁴) mbarn (Det. acceptance)	~420/Million	100 KHz	~LI Trigger rate
Ύ(4S)	O(10 ⁻⁶) mbarn	~4.2/Million	I KHz	Physics
Ingenio Paoloni		SuperB	<i>Bie</i>	nna, Feb. 2012 the.

RADIATIVE BHABHA

 $e^+e^- \rightarrow e^+e^-\gamma \quad (\gamma \sim \parallel e^-)$

Eugenio Paoloni

- Quasi elastic Bhabha of the electron on the positron associated with the emission of a photon
- The virtual photon and the virtual electron are almost on mass shell:
 - the amplitude pinches both poles of the propagator
- The particles in the final states escapes throughs the detector acceptance holes till
 - magnetic field deflect the lepton that radiated the photon
 - the photon or the deflected lepton hit the beam pipe
 - the debris of the electromagnetic shower hit the detector

Rienna, Feb. 2012 the 9th

INCOMING LEPTON GENERATION

- The angular divergence of the beam @ IP ~ $1/\gamma$ and cannot be neglected
- The momenta of the incoming particle and the position of the scattering vertex is generated from first principles
- All the gaussian features @ IP are modeled + Crab Waist as a bonus

$$\rho_{\text{ph.sp.}} \propto e^{-\frac{1}{2} \left[\left(\frac{x}{\sigma_{x}} \right)^{2} + \left(\frac{x'}{\sigma_{x'}} \right)^{2} + \left(\frac{y-y' \times \chi/\vartheta}{\sigma_{y}} \right)^{2} + \left(\frac{y'}{\sigma_{y'}} \right)^{2} + \left(\frac{s}{\sigma_{z}} \right)^{2} + \left(\frac{\varepsilon}{\sigma_{\varepsilon}} \right)^{2} \right]} \right]}$$

$$\rho_{\text{ph.sp.}} \propto e^{-\frac{1}{2} \left[\left(\frac{x}{\sigma_{x}} \right)^{2} + \left(\frac{x'}{\sigma_{x'}} \right)^{2} + \left(\frac{y-y' \times \chi/\vartheta}{\sigma_{y}} \right)^{2} + \left(\frac{y'}{\sigma_{y'}} \right)^{2} + \left(\frac{s}{\sigma_{\varepsilon}} \right)^{2} + \left(\frac{\varepsilon}{\sigma_{\varepsilon}} \right)^{2} \right]} \right]}$$

$$P_{\text{ph.sp.}} \propto e^{-\frac{1}{2} \left[\left(\frac{x}{\sigma_{x}} \right)^{2} + \left(\frac{x'}{\sigma_{x'}} \right)^{2} + \left(\frac{y-y' \times \chi/\vartheta}{\sigma_{y}} \right)^{2} + \left(\frac{y'}{\sigma_{y'}} \right)^{2} + \left(\frac{s}{\sigma_{\varepsilon}} \right)^{2} + \left(\frac{\varepsilon}{\sigma_{\varepsilon}} \right)^{2} \right]} \right]}$$

$$P_{\text{ph.sp.}} \propto e^{-\frac{1}{2} \left[\left(\frac{x}{\sigma_{x}} \right)^{2} + \left(\frac{x'}{\sigma_{x'}} \right)^{2} + \left(\frac{y-y' \times \chi/\vartheta}{\sigma_{y}} \right)^{2} + \left(\frac{y'}{\sigma_{y'}} \right)^{2} + \left(\frac{s}{\sigma_{\varepsilon}} \right)^{2} + \left(\frac{\varepsilon}{\sigma_{\varepsilon}} \right)^{2} \right]}$$

$$P_{\text{ph.sp.}} \propto e^{-\frac{1}{2} \left[\left(\frac{x}{\sigma_{x}} \right)^{2} + \left(\frac{x'}{\sigma_{x'}} \right)^{2} + \left(\frac{y-y' \times \chi/\vartheta}{\sigma_{y'}} \right)^{2} + \left(\frac{y'}{\sigma_{y'}} \right)^{2} + \left(\frac{s}{\sigma_{\varepsilon}} \right)^{2} + \left(\frac{\varepsilon}{\sigma_{\varepsilon}} \right)^{2} \right]}$$

$$P_{\text{ph.sp.}} \propto e^{-\frac{1}{2} \left[\left(\frac{x}{\sigma_{x}} \right)^{2} + \left(\frac{x'}{\sigma_{x'}} \right)^{2} + \left(\frac{y-y' \times \chi/\vartheta}{\sigma_{y'}} \right)^{2} + \left(\frac{y'}{\sigma_{y'}} \right)^{2} + \left(\frac{s}{\sigma_{\varepsilon}} \right)^{2} + \left(\frac{\varepsilon}{\sigma_{\varepsilon}} \right)^{2} \right]}$$

$$P_{\text{ph.sp.}} \qquad P_{\text{ph.sp.}} \propto e^{-\frac{1}{2} \left[\left(\frac{x}{\sigma_{x}} \right)^{2} + \left(\frac{x'}{\sigma_{x'}} \right)^{2} + \left(\frac{y}{\sigma_{z'}} \right)^{2} + \left(\frac{y}{\sigma_{z'}} \right)^{2} + \left(\frac{s}{\sigma_{\varepsilon}} \right)^{2} + \left(\frac{s}{\sigma_{$$

PRIMARIES GENERATION

 BBBrem (R. Kleiss, H. Burkhardt) arXiv:hep-ph/9401333

- Only two Feynman diagrams are taken into account out of the eight tree level diagrams
- The electron mass is not "neglected with impunity", i.e. the angular deflection of the lepton is properly simulated
- Finite density of the bunch is taken into account by an infrared cut-off parameter that fix the minimum momentum transfer $p_{min} \sim \hbar c/d$

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

RADIATIVE BHABHA CROSS SECTION

Rad. Bhabha Cross Section (mbarn) vs. Delta E /E

A SINGLE BUNCH CROSSING

RADIATIVE BHABHA: 1 BUNCH XING

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

1 BUNCH CROSSING: SECONDARIES

PRIMARIES LOSS RATE

L0 main bkg.: pairs production $\sigma \sim \frac{\alpha^2 r_e^2}{\pi} \left(\frac{28}{27} \ln^3 \frac{s}{m^2} - 6.59 \ln^2 \frac{s}{m^2} - 11.8 \ln^2 \frac{s}{m^2} + 104 \right)$

 $e^+ e^- \rightarrow e^+ e^- e^+ e^-$

$$p_ q_1$$
 q_4
 q_3
 p_+
 q_2

- In this scattering event there is:
- 1 track that hits the L0____
- this track fires 2 clusters in the L0
- each cluster will be composed by one or more hits

Definitions

Event rate:

 $\mathcal{R} = \mathcal{L} \sigma$

track rate:

cluster rate:

 $\mathcal{R}_{trk} = \mathcal{R} \ \langle \#trk \rangle_{evt}$

 $\mathcal{R}_{clus} = \mathcal{R}_{trk} \langle \# clus \rangle_{trk}$

 $\mathcal{R}_{\text{hits}} = \mathcal{R}_{\text{clus}} \langle \# hits \rangle_{\text{clus}}$

hit rate:

SIMULATION STRATEGY

Primaries generated with DIAG36 then

Bruno simulates the effects of primaries on detector

C	ALL THE FEYNMAN DIAGRAMS CONTRIBUTING IN LOWEST ORDER	
C	(IPROC=1 6 DIAGRAMS, IPROC=2 12 DIAGRAMS, IPROC=3 12DIAGRAM	S,
C	IPROC=4 12 DIAGRAMS, IPROC=5 36 DIAGRAMS)	
C	ARE TAKEN INTO ACCOUNT	
C	THE KINEMATICS IS TREATED EXACTLY	
C	THE PROGRAMS GENERATES EVENTS EFFICIENTLY UNDER	
C	NO- OR SMALL ANGLE TAGGING CONDITIONS	
С		
C***	************	****
C*		*
C*	AUTHORS : F.A. BERENDS, P.H. DAVERVELDT, R. KLEISS	
C*		*
C*	UNIVERSITY OF LEIDEN	
C*	INSTITUUT-LORENTZ VOOR THEORETISCHE NATUURKUNDE	*
C*	NIEUWSTEEG 18	*
C*	2311 SB LEIDEN	*
C*	THE NETHERLANDS	*
C*		*
C*		*
C*	INSTALLATION DATE :	
C*	LAST UPDATE : 8 FEBRUAR 1985	*
C*		*
C***	*******************	****
C		

FOR DETAILED INFORMATION ON THE CALCULATION OF THE MATRIX ELEMENT SQUARED AND ON THE PROCEDURE USED FOR THE EVENT GENERATION WE REFER TO THE PAPER : "COMPLETE LOWEST ORDER CALCULATIONS FOR FOUR-LEPTON PROCESSES IN E+ E- COLLISIONS"

NUCL. PHYS. B253 (1985) 441

DIAG36

Eugenio Paoloni

THIS PROGRAM RUNS IN DOUBLE PRECISION FORTRAN H-EXT.

Vienna, Feb. 2012 the 9th

DIAG36 TRACK RATE EVALUATION

Vienna, Feb. 2012 the 9th

WHY WE NEED BRUNO?

Primaries are very soft ~ few MeV Multiple Coulomb scattering and dE/dx are not negligible

Particles with $p_t < 3.5 \text{ MeV/c}$ can still hit the pipe and the Coulomb scattering can increase p_t at expense of the long. momentum

Vienna, Feb. 2012 the 9th

PAIR PRODUCTION

- Particles from this process can have enough transverse momentum to enter directly into the detector acceptance
 - The detector solenoidal field is the main trap for particles with small pt
 - Non trivial effects from the interactions with the beam pipe

BRUNO EVALUATION EXAMPLE

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

CLUSTER MULTIPLICITY

- In our model 1mm thick Be Beam Pipe + 3 μm Au
 @ r = 10 mm
- SVT L0 mean radius 14mm
 - track rate = $3.2 \text{ MHz}/\text{cm}^2$
 - Average cluster multiplicity per track 2.5
 - Cluster Rate 8.2 MHz/cm²
 - Average hit multiplicity per cluster 4 5 depending on the view

Eugenio Paoloni

Rienna, Feb. 2012 the 9th

INTENSITY DEPENDENT BKG.

- Touschek scattering and beam-gas scattering generates non gaussian tails in the bunch transverse profile
- The finite aperture of the beam pipe and the large β functions at the final focus doublet conspire to make these particles in the tails impinge on the beam pipe
- The non gaussian tails generation and transport through the lattice is simulated with STAR (M.Boscolo)
- Bruno simulates the interaction of these particles crossing the beam pipe near the IP to predict the effects on the detector

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

PRIMARY LOSS RATES

Modif. V12 Conclusions (1): Lifetime summary

	HER	LER
Touschek lifetime	τ _{του} (min)	τ _{του} (min)
No collimators, nominal ε_x (no IBS)	26.3	7.4
No collimators, $\boldsymbol{\epsilon}_{\!x}$ with IBS	26	10.2
With Collimators, ϵ_x with IBS	22	7.9
Coulomb	76min	39 min
Bremsstrahlung	72 hrs	77 hrs

M. Boscolo, December 14th 2011

Kienna, Leb. 2012 the 9th

LOSS RATE AT THE IP

Modif. V12 Conclusions (2): IR rates summary

|s|<2 m

Touschek	HER	LER
No collimators, $\boldsymbol{\epsilon}_{x}$ with IBS	2.5 GHz	17 GHz
With Collimators, $\boldsymbol{\epsilon}_{x}$ with IBS	7 MHz	100 MHz

Coulomb No collimators, ε _x with IBS	11 GHz	25 GHz
Coulomb with collimators, ε _x with IBS	11MHz	36 MHz
Bremsstrahlung with coll	130KHz	450KHz

Eugenio Paoloni

M. Boscolo, December 14th 2011

Vienna, Feb. 2012 the 9th

TOUSCHEK VS RAD. BHABHA

- LER Touschek IR loss rate 100 MHz vs Rad Bhabha 10 GHz
- But: the Touschek losses are fairly energetic ~ 4 GeV while the radiative Bhabha are quite soft
- The energy spectrum and the angular distributions of the secondaries are quite different.
- The total rate of the secondaries from Touschek is smaller
- The energy spectrum of the secondaries

Rad-Bhabha Losses at the Beam-pipe

HER positron rates		LER electron rates	
E range (GeV)	Rate (GHz)	E range (GeV)	Rate (GHz)
0.0 - 1.0	4.735	0.0 - 1.0	7.863
1.0 - 2.0	2.789	1.0 - 1.5	2.289
2.0 - 3.0	0.025	1.5 - 2.0	0.031
3.0 - 4.0	0.003	2.0 - 2.5	0.007
4.0 - 5.0	0.003	2.5 - 3.0	0.004
5.0 - 6.0	0.003	3.0 - 3.5	0.005
6.0 - 7.0	0.005	3.5 - 4.2	0.003
0.0 - 7.0	7.563	0.0 - 4.2	10.202

Ougenio Paoloni

Total rates around	the IP	(-3 to 3 mts)
---------------------------	--------	---------------

Touschek	HER	LER
No collimators, $\boldsymbol{\epsilon}_{x}$ with IBS	2.5 GHz	17 GHz
With Collimators, ε_x with IBS	7 MHz	100 MHz

Coulomb No collimators, ε_x with IBS	11 GHz	25 GHz
Coulomb with collimators, ϵ_x with IBS	11MHz	36 MHz
Bremsstrahlung with coll	130KHz	450KHz

Vienna, Feb. 2012 the 9th

CONCLUSIONS

- SuperB developed (in my humble opinion) a fairly good set of tools to understand and predict the backgrounds features
- The discrepancy in the pairs background rate is probably a byproduct of lack of communication between the 2 collaborations
- The beam pipe material play a significant role in the pairs background

Eugenio Paoloni

Rienna, Feb. 2012 the 9th

HER B_y(T) (Mathematica)

x(m)

HER B_y(T) (Mathematica)

Mechanical interface: boundaries

GENERATOR LEVEL COMPARISON

