### Belle-II background overview

- Touschek BG, beam-gas BG
  - Vertical collimators and beam instability
- Radiative Bhabha BG
- Synchrotron radiation BG
- 2-photon BG
- Full-detector GEANT4 simulation

#### Hiroyuki NAKAYAMA (KEK)

Belle-II/SuperB Joint BG meeting (Feb. 9-10, 2012)



# Expected change on BG from KEKB to SuperKEKB

• x20 smaller beam size

 $\rightarrow$  Touschek scattering rate increases drastically. Need special care.

• x2 more beam current

 $\rightarrow$  Touschek/Beam-gas scattering rate increases.

• x40 higher luminosity

 $\rightarrow$  Radiative Bhabha/2-photon scattering rate increases drastically.

• Smaller IR beam pipe aperture

 $\rightarrow$  scattered particles are more likely to be lost in IR, not in the tunnel.

• Final focusing scheme

ightarrow Back-scattering SR and over-bent radiative Bhabha can benefit from it

#### Final focusing scheme



In Belle-II, thanks to the <u>independent final Q magnets</u> for each ring, downstream orbits pass through the center of Q magnets, which results in <u>less dispersion</u> and therefore <u>less back-scattering SR BG</u> and <u>less over-bent radiative Bhabha background.</u>

### Estimation status of each BG

#### • Touschek BG

Reduced down to ~0.2GHz(LER/HER) thanks to horizontal/vertical collimators (Apr. 2011)

#### Beam-gas BG

- Reduced down to ~0.1GHz(LER/HER) thanks to vertical collimators. (Nov. 2011)

#### Synchrotron BG

Reduced down to few order smaller than PXD requirement thanks to collimation on incoming beam pipe (Jul. 2010, toy study) Full detector simulation has just started. (Jan. 2012)

#### Radiative Bhabha

 Most of spent electrons/positrons are lost outside detector thanks to independent final Q magnet (Aug. 2010). But few GHz are still lost in |s|<4m (Nov. 2011).</li>

#### 2-photon process

- Small enough according to KoralW simulation, which is confirmed with BELLE-I machine study (Nov. 2010).
- (Beam-beam)
  - Computational study ongoing by accelerator group

Hiroyuki Nakayama (KEK) B



Y. Ohnishi H. Nakayama

#### Touschek background



Intra-bunch scattering, Rate∝(beam size)<sup>-1</sup>,(E<sub>beam</sub>)<sup>-3</sup> More dangerous in LER

#### LER horizontal collimators



Compared to KEKB, we add more collimators (H5-H8) just before IP (-200m~-18m). Collimators are located where beta function or dispersion is large.

Hiroyuki Nakayama (KEK)

Belle-II/SuperB Joint BG meeting (Feb. 9-10, 2012)

### Vertically oscillating Touschek BG



#### **Belle detector**

Touschek scattered particles scattered at Fuji-area (where vertical dispersion exists) start vertical oscillation and are eventually lost in IR QC1 where  $\beta$ y is large.

Vertical collimator narrower than QC1 can reduce such Touschek loss. Beam instability caused by such collimator is an issue.

In Fuji area, LER ring bends vertically , to pass under HER ring



Vertical collimator width: few mm

#### Final Touschek loss in IR



#### Concept of horizontal collimators



H. Nakayama K. Kanazawa Y. Funakoshi

### Beam-gas background

Coulomb>> bremsstrahlung

Coulomb BG is naively proportional to P x I. Also depends on <u>beta function over the ring</u> and <u>IR physical aperture</u>.

 $P = 10^{-7}Pa$  is assumed

#### Beam-gas Coulomb lifetime



### Strategy to reduce Coulomb BG



We widened QC1 aperture without major change in QCS design. Coulomb lifetime improved (LER:  $1360 \rightarrow 2240sec$ , HER:  $2100 \rightarrow 3260sec$ )

#### <u>Vertical collimators!</u>

- QC1 aperture should not be narrowest over the ring
- Collimator aperture should be narrower than QC1 aperture
- Beam instability? (collimators should be very close(few mm) to the beam )

#### Where we should put vertical collimator?

Collimator <u>aperture</u> should be narrower than QC1 aperture.

$$d/\sqrt{\epsilon\beta} < r_{QC1}/\sqrt{\epsilon\beta_{QC1}} \implies d_{max} \propto \beta^{1/2}$$

TMC instability should be avoided.

Assuming following two formulae:

$$I_{thresh} = \frac{C_1 f_s E / e}{\sum_i \beta_i k_{\perp i}(\sigma_z)} > 1.44 \text{ mA/bunch (LER)}_{taken from "Handbook of accelerator}_{physics and engineering, p.121"} \implies d_{\min} \propto \beta^{2/3}$$
  
Kick factor  $k_{\perp} = 0.215AZ_0 c_{\sqrt{\frac{\theta}{\sigma_z d^3}}}$ 

#### We should put collimator where beta\_y is SMALL!

Hiroyuki Nakayama (KEK)

**Collimator** position

TMC:

500

 $d_{\min} \propto \beta^{2/2}$ 

Aperture

1000

 $d_{\rm max} \propto \beta^{1/2}$ 

beta[m]

d[mm]

#### Candidate collimator locations



Collimator position should satisfy beta\_y condition above, need space(at least 1.5m), and the phase should be close to IP

## Vertical collimator width vs. Coulomb loss rate, Coulomb life time

| ler | <b>1604</b> , V1=LLE | 33R downstream | า               |                   |
|-----|----------------------|----------------|-----------------|-------------------|
| V1  | width[mm]            | IR loss [GHz]  | Total loss[GHz] | Coulomb life[sec] |
|     | 2.40                 | 0.04           | 149.5           | 1513.3            |
|     | 2.50                 | 0.05           | 137.8           | 1642.0            |
|     | 2.60                 | 0.09           | 127.4           | 1776.0            |
|     | 2.70                 | 0.24           | 118.1           | 1915.2            |
|     | 2.80                 | 0.81           | 110.0           | 2057.2            |
|     | 2.90                 | 8.48           | 109.3           | 2069.6            |
|     | 3.00                 | 18.98          | 109.3           | 2069.6            |

Based on element-byelement simulation considering causality the phase difference (by Nakayama)

| her5365,V1=LTLB2 downstream |      |               |                 |                   |  |
|-----------------------------|------|---------------|-----------------|-------------------|--|
| V1 width[mm]                |      | IR loss [GHz] | Total loss[GHz] | Coulomb life[sec] |  |
|                             | 2.10 | 0.001         | 48.4            | 3379.4            |  |
|                             | 2.20 | 0.001         | 44.1            | 3709.0            |  |
|                             | 2.30 | 0.357         | 40.0            | 4053.8            |  |
|                             | 2.40 | 6.862         | 33.0            | 4099.1            |  |
|                             | 2.50 | 12.004        | 27.9            | 4099.1            |  |

IR loss rate is VERY sensitive to the vertical collimator width. (Once V1 aperture>QC1 aperture, all beam loss goes from V1 to IR

Typical orbit deviation at V1 : +-0.12mm (by iBump V-angle: +-0.5mrad@IP)

### Radiative Bhabha background

#### - Spent e+/e- loss in downstream

Dominant loss position is very far (~10m) from IP, but little fraction with large  $\Delta E$  (still dangerous with Lx40) can be lost inside detector.

- Gamma emitted from IP

They hit downstream (~10m) beam pipe/magnet and generate neutrons by giant dipole resonance. Neutron shielding inside tunnel will be increased

#### Radiative Bhabha BG



Within |z|<4m, loss rate: 6.8 GHz(0~1.4GeV) loss wattage: 0.55 W (Equivalent to 0.86GHz of 4GeV e-) Within |z|<4m, loss rate: 5.8 GHz(0~2GeV) loss wattage: 0.75 W (Equivalent to 0.68GHz of 7GeV e-)

+ 0.80W of 1-turn loss at z=-1.8m

#### **RBB** loss rate in the total ring



### Additional shields in tunnel



#### 2-photon BG





Figure 6.3: Event display of the two-photon KoralW events in the SVD

### 2-photon BG

#### C. Kiesling, S. Koblitz E. Nedelkovska





Figure 2.4: KoralW(dashed blue) and BDK(solid red) simulation

| Experiment | SVD layers          | Hits       | QED hits              | KoralW | SuperB(BDK) |
|------------|---------------------|------------|-----------------------|--------|-------------|
| Balla      | 1                   | $\sim 100$ | $13.3\pm2.6$          | 11.31  | 62.2        |
| Delle      | 2 - 4               | $\sim$ 45  | $\textbf{-2.9}\pm2.1$ | 2.38   | 13.1        |
| Belle II   | Occupancy (1st PXD) |            |                       | 0.7%   | 4.0%        |

Table 6.1: Comparison between data and Monte Carlo

KEKB machine study in 2010 is consistent with our generator, and inconsistent with SuperB numbers

#### Synchrotron BG

mainly from HER

### IR Beam pipe design for SR



#### "Ridge" structure on incoming beam pipe

Reflected SR cannot see the straight part of Beam pipe



Final decision on the shape of the ridge depends on the estimated impedance (loss factor).

#### M.Iwasaki

### SR simulation results in 2010



- Simplified geometry, no SR scattering/reflection considered
- Bending magnets, solenoids, Q magnets, Q leak field implemented
- $\bullet$  Gaussian beam with tail cutoff of 20  $\sigma$



#### H. Nakayama K. Itagaki Detailed SR simulation

- Just started in our full-detector GEANT4 framework
- Detailed beam pipe geometry implemented, only QC1/2 so far
- Waiting for correct solenoid field based on 3D ANSYS calculation
  - Currently using 2D "cylindrical" solenoid field which gives wrong orbit
- Consider reflection/scattering on Au coating of beam pipe
- Test-beam study to implement home-made "tip-scattering" model



J. Murakami S. Tanaka

#### X-ray beam test







Measure scattering angle distribution

Irradiate X-rays onto Ta tip plated with gold and measure angle distribution of scattered flux.

Analysis ongoing

### Total BG



|             | LER (4GeV e+)        | HER (7GeV e-)       |
|-------------|----------------------|---------------------|
| Rad. Bhabha | 0.55 W (eff. 0.9GHz) | 1.60W (eff. 1.4GHz) |
| Touschek    | 0.10 W (0.16GHz)     | 0.05 W (0.05GHz)    |
| Coulomb     | 0.06 W (0.09GHz)     | 0.001W (0.001GHz)   |

1GeV ,1GHz = 0.16W

#### Background picture at Belle-II



H.Nakayama (KEK)

### **Full-detector simulation**

- First campaign in Dec. 2011
  - 0.9GHz Touschek LER / 2photon
- Second campaign in Feb. 2012 (coming soon)
  - Touschek/Beam-gas/Rad. Bhabha/ 2photon

#### Whole geometry ready in GEANT4



Belle-II/SuperB Joint BG meeting (Feb. 9-10, 2012)

#### **Full-detector simulation**

Generated vertex of all MC particles



#### A. Moll



Hiroyuki Nakayar

M.Petric, L. Santej

#### **TOP/ARICH**



#### neutron damage /radiation dose



### Summary

- Touschek, beam-gas have been reduced, now radiative Bhabha dominates. (Same as SuperB!)
- I hope we can understand the 2-photon number discrepancy today
- SR simulation in full simulation started recently
- Full detector simulation campaign ongoing

### Limitation

- Touschek:
  - scattering at beam center only, perfect collimation assumed
- Beam-gas
  - scattering at beam center only, perfect collimation assumed
- RBB, 2-photon: OK
- SR
  - unrelalistic SR angular distribution, no sextapole or higher multi-pole
- Fullsim
  - loss at |z|>4m are not included